首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Nanofibers consisting of the bulk heterojunction organic photovoltaic (BHJ–OPV) electron donor–electron acceptor pair poly(3‐hexylthiophene):phenyl‐C61‐butyric acid methyl ester (P3HT:PCBM) are produced through a coaxial electrospinning process. While P3HT:PCBM blends are not directly electrospinnable, P3HT:PCBM‐containing fibers are produced in a coaxial fashion by utilizing polycaprolactone (PCL) as an electrospinnable sheath material. Pure P3HT:PCBM fibers are easily obtained after electrospinning by selectively removing the PCL sheath with cyclopentanone (average diameter 120 ± 30 nm). These fibers are then incorporated into the active layer of a BHJ–OPV device, which results in improved short‐circuit current densities, fill factors, and power‐conversion efficiencies (PCE) as compared to thin‐film devices of identical chemical composition. The best‐performing fiber‐based devices exhibit a PCE of 4.0%, while the best thin‐film devices have a PCE of 3.2%. This increase in device performance is attributed to the increased in‐plane alignment of P3HT polymer chains on the nanoscale, caused by the electrospun fibers, which leads to increased optical absorption and subsequent exciton generation. This methodology for improving device performance of BHJ–OPVs could also be implemented for other electron donor–electron acceptor systems, as nanofiber formation is largely independent of the PV material.  相似文献   

2.
To increase the efficiency of bulk heterojunction (BHJ) solar cells beyond 15%, 300 nm thick devices with 0.8 fill factor (FF) and external quantum efficiency (EQE) >90% are likely needed. This work demonstrates that numerical device simulators are a powerful tool for investigating charge‐carrier transport in BHJ devices and are useful for rapidly determining what semiconductor pro­perties are needed to reach these performance milestones. The electron and hole mobility in a BHJ must be ≈10?2 cm2 V?1 s?1 in order to attain a 0.8 FF in a 300 nm thick device with the recombination rate constant of poly(3‐hexyl­thiophene):[6,6]‐phenyl‐C61‐butyric acid methyl ester (P3HT:PCBM). Thus, the hole mobility of donor polymers needs to increase from ≈10?4 to ≈10?2 cm2 V?1 s?1 in order to significantly improve device performance. Furthermore, the charge‐carrier mobility required for high FF is directly proportional to the BHJ recombination rate constant, which demonstrates that decreasing the recombination rate constant could dramatically improve the efficiency of optically thick devices. These findings suggest that researchers should prioritize improving charge‐carrier mobility when synthesizing new materials for BHJ solar cells and highlight that they should aim to understand what factors affect the recombination rate constant in these devices.  相似文献   

3.
In this work, the detailed morphology studies of polymer poly(3‐hexylthiophene‐2,5‐diyl) (P3HT):fullerene(PCBM) and polymer(P3HT):polymer naphthalene diimide thiophene (PNDIT) solar cell are presented to understand the challenge for getting high performance all‐polymer solar cells. The in situ X‐ray scattering and optical interferometry and ex situ hard and soft X‐ray scattering and imaging techniques are used to characterize the bulk heterojunction (BHJ) ink during drying and in dried state. The crystallization of P3HT polymers in P3HT:PCBM bulk heterojunction shows very different behavior compared to that of P3HT:PNDIT BHJ due to different mobilities of P3HT in the donor:acceptor glass. Supplemented by the ex situ grazing incidence X‐ray diffraction and soft X‐ray scattering, PNDIT has a lower tendency to form a mixed phase with P3HT than PCBM, which may be the key to inhibit the donor polymer crystallization process, thus creating preferred small phase separation between the donor and acceptor polymer.  相似文献   

4.
Thermally activated transport and phonon scattering in P3HT:PCBM (poly(3‐hexylthiophene‐2,5‐diyl):[6,6]‐phenylC61‐butyric acid methyl ester) bulk heterojunction (BHJ) organic solar cells is studied via temperature‐dependent external‐quantum‐efficiency (EQE) spectroscopy. The hopping barriers for combined exciton and charge transport are balanced for the individual blended materials in a sample, which possesses a blending ratio and a morphology that give rise to a maximal power‐conversion efficiency. Increasing the PCBM weight fraction leads to a reduction of exciton hopping barriers in PCBM, while for P3HT exciton hopping barriers remain constant. This reduction of PCBM exciton hopping barriers is attributed to a higher PCBM crystallinity in the PCBM‐rich solar cell as compared to the BHJ with the optimized blending ratio. The morphology‐dependent difference in exciton hopping activation energies between P3HT and PCBM is attributed to a higher impact of phonon scattering in P3HT than in PCBM, as concluded from the much stronger decrease of P3HT‐related temperature‐dependent external quantum efficiencies above room temperature in the PCBM‐rich BHJ solar cell. All EQE data of P3HT:PCBM‐based BHJ solar cells is modeled consistently over a broad temperature range by a simple analytical expression involving temperature activation and phonon scattering, without the need to distinguish two separate hopping regimes.  相似文献   

5.
The development of non‐fullerene‐based electron acceptors (especially organic molecules with sufficient absorption property within the solar spectrum region) for bulk‐heterojunction (BHJ) organic solar cells (OSCs) is an important issue for the achievement of high photoconversion efficiency. In this contribution, a new class of organic acceptors di‐cyan substituted quinacridone derivatives (DCN‐nCQA, n = 4, 6 and 8) for BHJ solar cells was designed and synthesized. DCN‐nCQA molecules possess facile synthesis, solution processability, visible and near‐IR light absorption and relatively stable characteristics. The DCN‐8CQA molecule exhibited a proper LUMO energy level (–4.1 eV), small bandgap (1.8 eV) and moderate electron mobility (10?4 cm2 V?1 S?1), suggesting that this molecule is an ideal acceptor material for the classical donor material regio‐regular poly (3‐hexylthiophene) (P3HT). A photovoltaic device with a structure of [ITO/PEDOT:PSS/P3HT:DCN‐8CQA/LiF/Al] displayed a power conversion efficiency of 1.57% and a fill factor of 57% under 100 mW cm?2 AM 1.5G simulated solar illumination. The DCN‐nCQA molecules showed remarkable absorption in the region from 650 to 700 nm, where P3HT has a weak absorption promoting overlap with the solar spectrum and potentially improving the performance of the solar cell.  相似文献   

6.
Selective dye loading at the polymer/fullerene interface was studied for ternary blend bulk heterojunction solar cells, consisting of regioregular poly(3‐hexylthiophene) (RR‐P3HT), a fullerene derivative (PCBM), and a silicon phthalocyanine derivative (SiPc) as a light‐harvesting dye. The photocurrent density and power conversion efficiency of the ternary blend solar cells were most improved by loading SiPc with a content of 4.8 wt%. The absorption and surface energy measurements suggested that SiPc is located in the disordered P3HT domains at the RR‐P3HT/PCBM interface rather than in the PCBM and crystal P3HT domains. From the peak wavelength of SiPc absorption, the local concentration of SiPc ([SiPc]Local) was estimated for the RR‐P3HT:PCBM:SiPc ternary blends. Even for amorphous films of regiorandom P3HT (RRa‐P3HT) blended with PCBM and SiPc, [SiPc]Local was higher than the original content, suggesting dye segregation into the RRa‐P3HT/PCBM interface. For RR‐P3HT:PCBM:SiPc blends, [SiPc]Local increased with the increase in the P3HT crystallinity. Such interfacial segregation of dye molecules in ternary blend films can be rationally explained in terms of the surface energy of each component and the crystallization of P3HT being enhanced by annealing. Notably, the solvent annealing effectively segregated dye molecules into the interface without the formation of PCBM clusters.  相似文献   

7.
The role of poly(ethylene oxide) polymer is investigated as an effective buffer with Al electrodes to markedly improve the electrode interface and enhance the open‐circuit voltage (VOC) and the power conversion efficiency (PCE, η) of poly(3‐hexylthiophene) (P3HT):[6,6]‐phenyl C61‐butyric acid methyl ester (PCBM)‐based bulk‐heterojunction (BHJ) solar cells. A unique process is developed by thermally co‐evaporating the poly(ethylene glycol) dimethyl ether (PEGDE, Mn ca. 2000) polymer with Al metal simultaneously at different ratios in vacuum (10?6 Torr) to prepare the electrode buffers. The instant formation of a carbide‐like junction at the ethylene oxide/Al interface during the thermal evaporation is of essential importance to the extraction of electrons through the Al electrode. The performance of P3HT:PCBM‐based solar cells can be optimized by modulating the co‐evaporation ratios of the PEGDE polymer with Al metal due to the changes in the work functions of the electrodes. The VOC and η for devices fabricated with Al electrode are 0.44 V and 1.64%, respectively, and significantly improve to 0.58 V and 4.00% when applying the PEGDE:Al(2:1)/Al electrode. This research leads to a novel electrode design – free of salts, additives, complicated syntheses, and having tunable work function – for fabricating high‐performance photovoltaic cells.  相似文献   

8.
Understanding and controlling the morphology of donor/acceptor blends is critical for the development of solution processable organic solar cells. By crosslinking a poly(3‐n‐hexylthiophene‐2,5‐diyl) (P3HT) film we have been able to spin‐coat [6,6]‐phenyl‐C61‐butyric acid methyl ester (PCBM) onto the film to form a structure that is close to a bilayer, thus creating an ideal platform for investigating interdiffusion in this model system. Neutron reflectometry (NR) demonstrates that without any thermal treatment a smaller amount of PCBM percolates throughout the crosslinked P3HT when compared to a non‐crosslinked P3HT film. Using time‐resolved NR we also show thermal annealing increases the rate of diffusion, resulting in a near‐uniform distribution of PCBM throughout the polymer film. XPS measurements confirm the presence of both P3HT and PCBM at the annealed film's surface indicating that the two components are intermixed. Photovoltaic devices fabricated using this bilayer approach and suitable annealing conditions yielded comparable power conversion efficiencies to bulk heterojunction devices made from the same materials. The crosslinking procedure has also enabled the formation of patterned P3HT films by photolithography. Pillars with feature sizes down to 2 μm were produced and after subsequent deposition of PCBM and thermal annealing devices with efficiencies of up to 1.4% were produced.  相似文献   

9.
Investigations on the impact of interfacial modification on organic optoelectronic device performance often attribute the improved device performance to the optoelectronic properties of the modifier. A critical assumption of such conclusions is that the organic active layer deposited on top of the modified surface (interface) remains unaltered. Here the validity of this assumption is investigated by examining the impact of substrate surface properties on the morphology of poly(3‐hexylthiophene):1‐(3‐methoxycarbonyl)‐propyl‐1‐phenyl‐[6,6]C61 (P3HT:PCBM) bulk‐heterojunction (BHJ). A set of four nickel oxide and poly(3,4‐ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) hole transport layers (HTL) with contrasting surface properties and performance in organic photovoltaic (OPV) devices is studied. Differences in vertical composition variation and structural morphologies are observed across the samples, but only in the near‐interface region of <~20 nm. Near‐interface differences in morphology are most closely correlated with surface polarity and surface roughness of the HTL. Surface polarity is more influenced by surface composition than surface roughness and crystal structure. These findings corroborate the previously mentioned conclusions that the differences in device performance observed in solar cells employing these HTLs are dominated by the electronic properties of the HTL/organic photoactive active layer interface and not by unintentional alteration in the BHJ active layer morphology.  相似文献   

10.
This article reports experimental studies on internal charge dissociation, transport, and collection by using magnetic field effects of photocurrent (MFEPC) and light‐assisted dielectric response (LADR) in highly‐efficient organic solar cells based on photovoltaic polymer PTB2 and PTB4 with intra‐molecular “donor–acceptor” interaction. The MFEPC at low‐field (< 150 mT) indicates that intra‐molecular “donor‐acceptor” interaction generates charge dissociation in un‐doped PTB2 and PTB4 films, which is similar to that in lightly doped P3HT (Poly(3‐hexylthiophene)) with 5 wt% PCBM (1‐(3‐methyloxycarbonyl)‐propyl‐1‐phenyl (6,6) C61). After PTB2 and PTB4 are mixed with PCBM to form bulk‐heterojunctions, the MFEPC at high‐field (> 150 mT) reveals that the charge‐transfer complexes formed at PTB2:PCBM and PTB4:PCBM interfaces have much lower binding energies due to stronger electron‐withdrawing abilities, as compared to the P3HT:PCBM device, towards the generation of photocurrent. Furthermore, the light‐assisted dielectric response: LADR indicates that the PTB2:PCBM and PTB4:PCBM solar cells exhibit larger capacitances relative to P3HT:PCBM device under photoexcitation. This reflects that the PTB2:PCBM and PTB4:PCBM bulk heterojunctions have more effective charge transport and collection than the P3HT:PCBM counterpart. As a result, our experimental results indicate that intra‐molecular “donor‐acceptor” interaction plays an important role to enhance charge dissociation, transport, and collection in bulk‐heterojunction organic solar cells.  相似文献   

11.
In bulk heterojunction (BHJ) polymeric organic solar cells (OSCs), the use of processing additives in the material formulation has emerged as a promising, cost‐effective, and widely applicable method for optimizing the phase separation between the donor (D) and acceptor (A) materials, thus increasing their efficiency. So far, however, there has been no systematic approach for identifying suitable processing additives for a given D:A system. A method based on the Hansen solubility parameters (HSPs) is proposed for guiding the selection of processing additives for a given D:A combination. The method is applied to the archetypical poly(3‐hexylthiophene) (P3HT) and [6,6]‐phenyl‐C61‐butyric acid methyl ester (PCBM) system. The HSPs of these materials are determined and used to define a set of numerical criteria that need to be satisfied by a processing additive in order for it to be effective in realizing a higher efficiency OSC. Applying the selection criteria results in the identification of three novel processing additives. OSCs made of these formulations demonstrate an increase in their short‐circuit current density (JSC) and power conversion efficiency (PCE). These results demonstrate the efficiency of these novel processing additives and show that the HSPs represent a useful tool to determine and explore new types of processing additives for BHJ‐OSCs.  相似文献   

12.
The most successful active film morphology in organic photovoltaics is the bulk heterojunction (BHJ). The performance of a BHJ arises from a complex interplay of the spatial organization of the segregated donor and acceptor phases and the local order/quality of the respective phases. These critical morphological features develop dynamically during film formation, and it has become common practice to control them by the introduction of processing additives. Here, in situ grazing incidence X‐ray diffraction (GIXD) and grazing incidence small angle X‐ray scattering (GISAXS) studies of the development of order in BHJ films formed from the donor polymer poly(3‐hexylthiophene) and acceptor phenyl‐C61‐butyric acid methyl ester under the influence of two common additives, 1,8‐octanedithiol and 1‐chloronaphthalene, are reported. By comparing optical aggregation to crystallization and using GISAXS to determine the number and nature of phases present during drying, two common mechanisms by which the additives increase P3HT crystallinity are identified. Additives accelerate the appearance of pre‐crystalline nuclei by controlling solvent quality and allow for extended crystal growth by delaying the onset of PCBM‐induced vitrification. The glass transition effects vary system‐to‐system and may be correlated to the number and composition of phases present during drying.  相似文献   

13.
Bulk heterojunction (BHJ) photovoltaic devices made of PCDTBT (poly[N‐9′‐hepta‐decanyl‐2,7‐carbazole‐alt‐5,5‐(4′,7′‐di‐2‐thienyl‐2′,1′,3′‐benzothiadiazole)]) and PC70BM ([6,6]‐phenyl‐C70‐butyric acid methyl ester) are among the most efficient and stable devices studied so far. However, during a short regime called “burn‐in”, a significant decrease of power conversion efficiency was observed. A study of the photochemical mechanisms involved in the PCDTBT:PCBM active layer exposed to light in encapsulated systems is presented. It is found that the photochemical reactions resulting from the absorption of light by PCDTBT involve crosslinking between the 2,7 carbazole unit of PCDTBT and the fullerene unit of PCBM. Those reactions stabilize the BHJ by avoiding the formation of microsized PCBM crystals known to cause failure of BHJ solar cells. Using classical electron paramagnetic resonance spectroscopy (EPR) (without illumination), paramagnetic defects along the polymer chains have been detected. The kinetics of defects intensity show a burn‐in trend. The evolution of their relaxation times upon aging is in good agreement with a structural change (crosslinking) of the BHJ observed from the nanomechanical properties. Finally, light‐induced electron paramagnetic resonance (LEPR) measurements performed on aged samples revealed that electron transfer is not significantly affected upon aging, confirming thus the stabilization of the BHJ in solar cell operating conditions.  相似文献   

14.
In the pursuit of developing new materials for more efficient bulk‐heterojunction solar cells, the blend poly (3‐hexylthiophene):[6,6]‐phenyl‐C61‐butyric acid methyl ester (P3HT:PCBM) serves as an important model system. The success of the P3HT:PCBM blend comes from efficient charge generation and transport with low recombination. There is not, however, a good microscopic picture of what causes these, hindering the development of new material systems. In this report UV photoelectron spectroscopy measurements on both regiorandom‐ (rra) and regioregular‐ (rr) P3HT are presented, and the results are interpreted using the Integer Charge Transfer model. The results suggest that spontaneous charge transfer from P3HT to PCBM occurs after heat treatment of P3HT:PCBM blends. The resulting formation of an interfacial dipole creates an extra barrier at the interface explaining the reduced (non‐)geminate recombination with increased charge generation in heat treated rr‐P3HT:PCBM blends. Extensive photoinduced absorption measurements using both above‐ and below‐bandgap excitation light are presented, in good agreement with the suggested dipole formation.  相似文献   

15.
Developing a better understanding of the evolution of morphology in plastic solar cells is the key to designing new materials and structures that achieve photoconversion efficiencies greater than 10%. In the most extensively characterized system, the poly(3‐hexyl thiophene) (P3HT):[6,6]‐phenyl‐C61‐butyric‐acid‐methyl‐ester (PCBM) bulk heterojunction, the origins and evolution of the blend morphology during processes such as thermal annealing are not well understood. In this work, we use a model system, a bilayer of P3HT and PCBM, to develop a more complete understanding of the miscibility and diffusion of PCBM within P3HT during thermal annealing. We find that PCBM aggregates and/or molecular species are miscible and mobile in disordered P3HT, without disrupting the ordered lamellar stacking of P3HT chains. The fast diffusion of PCBM into the amorphous regions of P3HT suggests the favorability of mixing in this system, opposing the belief that phase‐pure domains form in BHJs due to immiscibility of these two components.  相似文献   

16.
Developing a better understanding of the evolution of morphology in plastic solar cells is the key to designing new materials and structures that achieve photoconversion efficiencies greater than 10%. In the most extensively characterized system, the poly(3‐hexyl thiophene) (P3HT):[6,6]‐phenyl‐C61‐butyric‐acid‐methyl‐ester (PCBM) bulk heterojunction, the origins and evolution of the blend morphology during processes such as thermal annealing are not well understood. In this work, we use a model system, a bilayer of P3HT and PCBM, to develop a more complete understanding of the miscibility and diffusion of PCBM within P3HT during thermal annealing. We find that PCBM aggregates and/or molecular species are miscible and mobile in disordered P3HT, without disrupting the ordered lamellar stacking of P3HT chains. The fast diffusion of PCBM into the amorphous regions of P3HT suggests the favorability of mixing in this system, opposing the belief that phase‐pure domains form in BHJs due to immiscibility of these two components.  相似文献   

17.
A high electron mobility polymer, poly{[N,N’‐bis(2‐octyldodecyl)‐naphthalene‐1,4,5,8‐bis(dicarboximide)‐2,6‐diyl]‐alt‐5,5’‐(2,2’‐bithiophene) (P(NDI2OD‐T2)) is investigated for use as an electron acceptor in all‐polymer blends. Despite the high bulk electron mobility, near‐infrared absorption band and compatible energy levels, bulk heterojunction devices fabricated with poly(3‐hexylthiophene) (P3HT) as the electron donor exhibit power conversion efficiencies of only 0.2%. In order to understand this disappointing photovoltaic performance, systematic investigations of the photophysics, device physics and morphology of this system are performed. Ultra‐fast transient absorption spectroscopy reveals a two‐stage decay process with an initial rapid loss of photoinduced polarons, followed by a second slower decay. This second slower decay is similar to what is observed for efficient P3HT:PCBM ([6,6]‐phenyl C61‐butyric acid methyl ester) blends, however the initial fast decay that is absent in P3HT:PCBM blends suggests rapid, geminate recombination of charge pairs shortly after charge transfer. X‐ray microscopy reveals coarse phase separation of P3HT:P(NDI2OD‐T2) blends with domains of size 0.2 to 1 micrometer. P3HT photoluminescence, however, is still found to be efficiently quenched indicating intermixing within these mesoscale domains. This hierarchy of phase separation is consistent with the transient absorption, whereby localized confinement of charges on isolated chains in the matrix of the other polymer hinders the separation of interfacial electron‐hole pairs. These results indicate that local, interfacial processes are the key factor determining the overall efficiency of this system and highlight the need for improved morphological control in order for the potential benefit of high‐mobility electron accepting polymers to be realized.  相似文献   

18.
The systematic insertion of thin films of P3HT and PCBM at the electron‐ and hole‐collecting interfaces, respectively, in bulk‐heterojunction polymer solar cells results in different extents of reduction in device characteristics, with the insertion of P3HT at the electron‐collecting interface being less disruptive to the output currents compared to the insertion of PCBM at the hole‐collecting interface. This asymmetry is attributed to differences in the tail state‐assisted charge injection and recombination at the active layer‐electrode interfaces. P3HT exhibits a higher density of tail states compared to PCBM; holes in these tail states can thus easily recombine with electrons at the electron‐collection interface during device operation. This process is subsequently compensated by the injection of holes from the cathode into these tail states, which collectively enables net current flow through the polymer solar cell. The study presented herein thus provides a plausible explanation for why preferential segregation of P3HT to the cathode interface is inconsequential to device characteristics in P3HT:PCBM bulk‐heterojunction solar cells.  相似文献   

19.
Environmental friendly aqueous‐processed solar cells have become one of the most promising candidates for the next‐generation photovoltaic devices. Researchers have made lots of progress in designing active materials with novel structures, manipulating the defects in active materials, optimizing device architecture, etc. However, it has long been a challenge to control the width of the depletion region and enhance carrier extraction ability. Fabrication of a thick bulk heterojunction (BHJ) film is an effective strategy to address these issues but difficult to realize. Herein, the thicker BHJ film of ZnO:CdTe is successfully fabricated and incorporated into CdTe‐poly(p‐phenylenevinylene) hybrid solar cells. As expected, this BHJ film enhances light absorption, extends the width of the depletion region, prolongs carrier lifetime, and promotes carrier extraction ability. Moreover, the electron transport layer of sol–gel ZnO with excellent transmittance and electrical conductivity boosts electron generation, transport, and injection, which further improves the device performance. As a result, the highest short current density (Jsc) of 19.5 mA cm?2, power conversion efficiency of 6.51%, and the widest depletion region (177 nm) are obtained in aqueous‐processed hybrid solar cells.  相似文献   

20.
A method to study the structural evolution of organic bulk heterojunctions via real‐time, in‐situ, steady‐state photoluminescence (PL) is presented. In‐situ PL, in combination with real‐time transmission and reflection measurements, allows us to quantitatively describe the progression of intimate mixing during blade coating of two OPV systems: the common model system poly(3‐hexylthiophene‐2,5‐diyl)/phenyl‐C61‐butyric‐acid‐methyl ester (P3HT/PCBM), and the higher power conversion efficiency system 7,7′‐(4,4bis(2‐ethylhexyl)‐4H‐silolo[3,2‐b:4,5‐b′]dithiophene‐2,6‐diyl)bis(6‐fluoro‐5‐(5′‐hexyl‐[2,2′‐bithiophen]‐5‐yl)benzo[c][1,2,5]thiadiazaole), p‐DTS(FBTTh2)2/[70]PCBM. Evaluating the time dependence of the PL intensity during drying using a 3D‐random‐walk diffusion model allows for the quantitative determination of the ratio of characteristic domain size to exciton diffusion length during solidification in the presence of the processing additives 1‐chloronaphtalene (CN), 1,8‐octanedithiol (ODT), and 1,8‐diiodooctane (DIO). In both cases, the obtained results are in good agreement with the typically observed fibril widths and grain sizes, for P3HT and p‐DTS(FBTTh2)2, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号