首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Four nimbolinin-type limonoids, 12α/β-1-O-tigloyl-1-O-deacetyl-nimbolinin B (1), 1-deacetylnimbolinin B (2), nimbolinin B (3) and nimbolinin A (4), were isolated from the fruits of Melia toosendan. 1 was a new compound and existed as a mixture of a pair of tautomers, 12α- (1a) and 12β- (1b). The structures of both tautomers were fully determined by extensive spectroscopic methods including UV, IR, NMR and ESI-MS. Tautomeric behaviors and their relative molar ratios in compounds 1–4 were further investigated using optical rotation, TLC, 1H NMR and HPLC. Equilibrium equation of nimbolinin was proposed accordingly, with 12α- and 12β-isomers interchanging via a 12-hemiacetal intermediate.  相似文献   

2.
A new complex triterpenoid saponin was isolated from the stem bark of Samanea saman by using chromatographic methods. Its structure was established as 3-[(2-O-β-d-glucopyranosyl-β-d-glucopyranosyl)oxy]-2,23-dihydroxy-(2β,3β,4α)-olean-12-en-28-oic acid O-β-d-glucopyranosyl-(1  3)-O-[O-β-d-glucopyranosyl-(1  4)]-O-6-deoxy-α-l-mannopyranosyl-(1  2)-6-O-[4-O-[(2E,6S)-2,6-dimethyl-1-oxo-2,7-octadienyl]-6-deoxy-α-l-mannopyranosyl)oxy]-β-d-glucopyranosyl ester (1). Structural elucidation was performed using detailed analyses of 1H and 13C NMR spectra including 2D NMR spectroscopic techniques and chemical conversions. The haemolytic activity of the saponin was evaluated using in vitro assays, and its adjuvant potential on the cellular immune response against ovalbumin antigen was investigated using in vivo models.  相似文献   

3.
A new flavanone glycoside, naringenin-7-O-β-d-glucuronopyranoside, and a new flavonol glycoside, 6-hydroxykaempferol-7-O-β-d-glucuronopyranoside were isolated together with 12 known compounds, 5 flavone glycoside; hispidulin-7-O-β-d-glucuronopyranoside, apigenin-7-O-β-d-methylglucuronopyranoside, hispidulin-7-O-β-d-methylglucuronopyranoside, hispidulin-7-O-β-d-glucopyranoside, apigenin-7-O-β-d-glucopyranoside, a flavonol; kaempferol, two flavone; apigenin, and luteolin, a flavanone glycoside; eriodictyol-7-O-β-d-glucuronopyranoside, and three phenol glycoside; arbutin, salidroside, and 3,5-dihydroxyphenethyl alcohol-3-O-β-d-glucopyranoside from Centaurea urvillei subsp. urvillei. The structure elucidation of the new compounds was achieved by a combination of one- (1H and 13C) and two-dimensional NMR techniques (G-COSY, G-HMQC, and G-HMBC) and LC-ESI-MS. The isolated compounds were tested for their antiproteasomal activity. The results indicated that kaempferol, a well known and widely distributed flavonoid in the plant kingdom, was the most active antiproteasomal agent, followed by apigenin, eriodictyol-7-O-β-d-glucuronopyranoside, 3,5-dihydroxyphenethyl alcohol-3-O-β-d-glucopyranoside, and salidroside, respectively.  相似文献   

4.
A phytochemical analysis of Dianthus erinaceus Boiss. var. erinaceus (Caryophyllaceae) has led to the isolation of two novel triterpenoid saponins, containing an oleane type skeleton, named dianosides K and L (1, 2), along with six known triterpenoid saponins (3–8). On the basis of chemical and spectrometric data, the structures of the new compounds were elucidated as 3-O-[β-d-glucopyranosyl (1  3)]–[β-d-glucopyranosyl (1  6)]-β-d-glucopyranosyl-olean-12-ene-23α,28-β–dioic acid 28-O-β-d-glucopyranosyl ester (1) and 3-O-[β-d-glucopyranosyl (1  3)]–[β-d-glucopyranosyl(1  6)]-β-d-glucopyranosyl-olean-12-ene-23α,28-β-dioic acid 28-O-α-l-mannopyranosyl (1  6)-β-d-glucopyranosyl ester (2). All isolated natural compounds were structurally characterized by 1D- (1H, 13C, DEPT); 2D- (COSY, HMQC, HMBC) NMR and HR-ESI/MS methods. The antimicrobial activity of compounds 1 and 2 were tested against four Gram-negative, three Gram-positive bacteria and the yeast Candida albicans by the MIC method.  相似文献   

5.
From the leaves of Stevia rebaudiana, two new sweet glucosides, rebaudiosides A and B, were isolated besides the known glucosides, stevioside and steviolbioside. On the basis of IR, MS, 1H and 13C NMR as well as chemical evidences, the structure of rebaudioside B was assigned as 13-O-[β-glucosyl(1-2)-β-glucosyl(1-3)]-β-glucosyl-steviol and rebaudioside A was formulated as its β-glucosyl ester.  相似文献   

6.
Three new steroidal saponins, spirosta-5,25(27)-diene-1β,3β-diol-1-O-α-l-rhamnopyranosyl-(1→2)-β-d-fucopyranoside (fruticoside H) 1, 5α-spirost-25(27)-ene-1β,3β-diol-1-O-α-l-rhamnopyranosyl-(1→2)-(4-O-sulfo)-β-d-fucopyranoside (fruticoside I) 2, and (22S)-cholest-5-ene-1β,3β,16β,22-tetrol 1-O-β-galactopyranosyl-16-O-α-l-rhamnopyranoside (fruticoside J) 3, together with the known quercetin 3-O-β-d-glucopyranoside, quercetin 3-O-[6-trans-p-coumaroyl]-β-d-glucopyranoside, quercetin 3-rutinoside, apigenin 8-C-β-d-glucopyranoside and farrerol, were isolated from the leaves of Cordyline fruticosa. Their structures were elucidated by spectroscopic techniques (1H NMR, 13C NMR, HSQC, 1H–1H COSY, HMBC, TOCSY, NOESY), mass spectrometry (HRESIMS, Tandem MS–MS), chemical methods and by comparison with published data. Compounds 1 and 2 showed moderate cytotoxic activity against MDA-MB 231 human breast adenocarcinoma cell line, HCT 116 human colon carcinoma cell line, and A375 human malignant melanoma cell line, while compound 3 was not active. Compound 2 also showed a moderate antibacterial activity against the Gram-positive Enterococcus faecalis.  相似文献   

7.
Because Congo red (CR) can bind to critical intermediate structural forms of amyloid beta (Aβ), it has been suggested as a potential therapeutic agent against neurodegenerative disorders such as Alzheimer’s disease. In this study, the interaction of CR with Aβ12–28 was investigated by use of isothermal titration calorimetry (ITC). Studies conducted between 15 and 35 °C show that binding of CR to Aβ12–28 was strongly dependent on temperature, with a decrease in CR–Aβ12–28 complexation as temperature increases, presumably because of conformational changes within Aβ12–28 at the highest temperatures, that conceal the CR binding sites. In fact, no CR binding was observed at 35 °C. The binding of CR to Aβ12–28 was associated with favorable changes in both enthalpy and entropy that resulted in binding constants (K) of between 105 and 106 M ?1. An early (and more intense) entropy-driven CR disaggregation phase (K ~107–108 M ?1) was observed before the onset of CR–Aβ12–28 complexation. Only CR disaggregation was observed at 35 °C. These results may provide further insights into the ability of CR to inhibit Aβ toxicity in neurodegenerative diseases.  相似文献   

8.
Two polysaccharides were isolated from Escherichia coli O12, the major being identified as the O12-antigen and the minor as the K5-antigen. The polysaccharides were studied by sugar analysis, Smith degradation, and one- and twodimensional 1H and 13C NMR spectroscopy. As a result, the following structure of the O12-polysaccharide was elucidated, which, to our knowledge, has not been hitherto found in bacterial carbohydrates: →2)-β-D-Glcp-(1→6)-α-D-GlcpNAc(1→3)-α-L-FucpNAc-(1→3)-β-D-GlcpNAc-(1→. The →4)-β-D-GlcpA-(1→4)-α-D-GlcpNAc-(1→ structure established for the K5-polysaccharide (heparosan) is previously known. Functions of genes in the O-antigen biosynthesis gene cluster of E. coli O12 were assigned by comparison with sequences in the available databases and found to be consistent with the O12-polysaccharide structure.  相似文献   

9.
Two biologically active noroleanane saponins from Celmisia petriei are identified as 3-O-(α-l-arabinopyranosyl (1 → 6)-β-d-glucopyranosyl (1 → 2)-α-l-arabinopyranosyl), 2β,17,23-trihydroxy-28-norolean-12-en-16-one and its 2″-O-acetyl derivative. 13C NMR and T1 measurements allowed the determination of the sugar sequence and the majority of the linkage positions, but gave ambiguous results for the inner arabinose sugar. The structure of camellenodiol is revised to 3β,17-dihydroxy-28-norolean-12-en-16-one.  相似文献   

10.
Cellulase [see 1,4-(1,3;1,4)-β-d-glucan 4-glucanohydrolase, EC 3.2.1.4], β-d-glucosidase (β-d-glucoside glucanohydrolase, EC 3.2.1.21) and d-xylanase (1,4-β-d-xylan xylanohydrolase, EC 3.2.1.8) production by Aspergillus ustus, Sporotrichum pulverulentum, Trichoderma sp. (a), Trichoderma sp. (b) and Botrytis sp. in solid state fermentation on different compounded media containing wheat bran (WB), rice straw (RS) and minerals was studied. Toyama's mineral solution mixed with RS was found to be a better substrate for cellulase and d-xylanase while with WB it induced higher β-d-glucosidase production. A ratio of substrate to mineral solution (w/v) of 1:4 or 1:5 supported high d-xylanase and cellulase production whereas a ratio of 1:2 gave the highest β-d-glucosidase activity. Among the fungal isolates, Aspergillus ustus gave the highest β-d-glucosidase activity of 60 U g−1WB and the highest d-xylanase activity of 740 U g−1was obtained with RS. A mixture of seven parts of RS and three of WB, mixed with 40 parts of Toyama's mineral solution yielded 6 U filter paper activity, 40 U β-d-glucosidase, 12 U carboxymethylcellulase and 650 U d-xylanase g−1substrate.  相似文献   

11.
Two new dammarane saponins, 2α,3β,12β-trihydroxydammar-20(22),24-diene-3-O-[β-d-glucopyranoxyl(1→2)-β-d-6″-O-acetylglucopyranoside (1, namely damulin C) and 2α,3β,12β-trihydroxydammar-20(21),24-diene-3-O-[β-d-glucopyranoxyl(1→2)-β-d-6″-O-acetylglucopyranoside (2, namely damulin D), were isolated from the ethanol extract of Gynostemma pentaphyllum, which had been heat processed by steaming at 125 °C. The NMR spectroscopic data of the novel saponins were completely assigned by using a combination of 2D NMR experiments including 1H–1H COSY, HSQC, and HMBC. Their cytotoxic activities of human liver adenocarcinoma HepG2 cells were evaluated in vitro. They showed cytotoxicities against HepG2 cell line with IC50 of 40 ± 0.7 and 38 ± 0.5 μg/ml, respectively.  相似文献   

12.
The known compounds chrysoeriol, apigenin, luteolin, acacetin, scutellarein, 6-methoxyluteolin, apigenin 7-glucoside, luteolin 7-glucoside, esculetin, chrysophanol, asphodeline, mircocarpin, sitosterol, 1-β-acetoxyeudesman-4(15),7(11)dien-2α,12-olide and 1-β-acetoxy-8β-hydroxyeudesman-4(15),7(11)-dien-8α,12-olide were isolated from Asphodeline globifera and A. damascena. A new sesquiterpene lactone 1-β-acetoxy-8β-ethoxyeudesman-4(15),7(11)dien-8α, 12-olide was also characterized. These are the first reports of sesquiterpene lactones in Asphodeline and in the Liliaceae.  相似文献   

13.
Three new dammarane-type sapogenins (1, 3, and 5) together with two known ones (2 and 4) were isolated from the total hydrolyzed saponins extracted from Panax ginseng berry. Their structures were elucidated using a combination of 1D and 2D 1H and 13C NMR spectra and mass spectroscopy as 20(R)-25-methoxyl-dammarane-3β,12β,20-triol (1), 20(R)-25-methoxyl-dammarane-3β,6α,12β,20-tetrol (2), 20(R)-20-methoxyl-dammarane-3β,12β,25-triol (3), 20(R)-20,25-dimethoxyl-dammarane-3β,12β-diol (4), and (12R,20S,24S)-20,24-; 12,24-diepoxy-dammarane-3β-ol (5). Their antitumor activities were evaluated in six human cancer cell lines. The novel compounds 1 and 3 showed significant cytotoxic activity against the six cell lines. The IC50 values of 3 against HepG2, Colon205, and HL-60 were the lowest (8.78, 8.64, and 3.98 μM, respectively). Compounds 1 and 20(S)-25-OCH3-PPD, which are a pair of configuration isomers, showed a 10- to 100-fold greater growth inhibition than ginsenoside-Rg3 (an anti-cancer clinical agent in China). The data presented here may be useful for the development of novel anti-cancer agents.  相似文献   

14.
From the roots of Gundelia tournefortii seven saponins have been isolated mainly by DCCC. The main saponins (A and B) were characterized, mainly by 13C and 1H NMR spectroscopy, as oleanolic acid 3-O-(2-[α-l-arabinopyranosyl(1 → 3) -β-d-gentiotriosyl(1 → 6) -β-d-glucopyranosyl]gb-d-xylopyranoside) (saponin A) and oleanolic acid 3-O-(2-[α-l-arabinopyranosyl] (1 → 3)-β-d-gentiobiosyl (1 → 6)-β-d-glucopyranosyl β-d-xylopyranoside) (saponin B). The other saponins are also derived from oleanolic acid and contain more sugar units. The saponin mixture and the saponins A and B possess strong molluscicidal activity against the schistosomiasis transmitting snail Biomphalaria glabrata.  相似文献   

15.
Four triterpenoid saponins (14) were isolated from the aerial parts of Trifolium argutum Sol. (sharp-tooth clover) and their structures were elucidated by comprehensive spectroscopic analysis, including 1D and 2D NMR techniques, mass spectrometry and chemical methods. Two of them are new compounds, characterized as 3-O-[α-l-rhamnopyranosyl-(1→2)-β-d-galactopyranosyl-(1→2)-β-d-glucuronopyranosyl]-3β,24-dihydroxyolean-12-ene-22-oxo-29-oic acid (1) and 3-O-[β-d-galactopyranosyl-(1→2)-β-d-glucuronopyranosyl]-3β,24-dihydroxyolean-12-ene-22-oxo-29-oic acid (2). The occurrence of 3β,24-dihydroxyolean-12-ene-22-oxo-29-oic acid (melilotigenin) in its natural form is reported for the first time as a triterpenoid aglycone within Trifolium species. The phytotoxicity of compounds was evaluated on four STS at concentration 1 μM to 333 μM. Compound 1 was the most active, showing more than 60% inhibition on the root growth of L. sativa at the higher dose, with IC50 (254.1 μM) lower than that of Logran® (492.6 μM), a commercial herbicide used as positive control. The structure–activity relationships indicated that both aglycones and glycosidic parts may influence the phytotoxicity of saponins.  相似文献   

16.
A new caffeic glycoside ester, poliumoside, has been isolated from the aerial parts of Teucrium belion. Its structure, [β-(3′,4′-dihydroxyphenyl)-ethyl]-(3,6-O-α-L-dirhamnopyranosyl)-(4-O-caffeoyl)-β-D-glucopyranoside, was established mainly by high-resolution 1H NMR and 13C NMR spectroscopy.  相似文献   

17.
A new phenolic glycoside (E)-4-hydroxycinnamyl alcohol 4-O-(2′-O-β-d-apiofuranosyl)(1″  2′)-β-d-glucopyranoside (1) was isolated and identified from Cucumis melo seeds together with benzyl O-β-d-glucopyranoside (2), 3,29-O-dibenzoylmultiflor-8-en-3α,7β,29-triol (3) and 3-O-p-amino-benzoyl-29-O-benzoylmultiflor-8-en-3α,7β,29-triol (4). Their structures were elucidated by extensive NMR experiments including 1H–1H (COSY, TOCSY, ROESY) and 1H–13C (HSQC and HMBC) spectroscopy and chemical evidence. The multiflorane triterpene esters were identified as new melon constituents.  相似文献   

18.
Eight neutral oligosaccharide fractions were obtained from the pooled urine of two patients with mannosidosis by Bio-Gel P2 and Bio-Gel P4 column chromatography. The structures of seventeen oligosaccharides were determined by monosaccharide composition analysis, methylation studies, acetolysis, Smith degradation, and 13C NMR analysis. Three of the proposed structures, Manα1-3Manβ1-4GlcNAc, Manα1-2Manα1-3Manβ1-4GlcNAc, and Manα1-2Manα1-2Manα1-3Manβ1-4GlcNAc are identical to those first published by Norden et al. (N. E. Norden, A. Lundblad, S. Svennson, P. A. Ockerman, and S. Autio, 1973. J. Biol. Chem.248, 6210–6215; N. E. Norden, A. Lundblad, S. Svennson, and S. Autio, 1974. Biochemistry13, 871–874). Thirteen of them, Manα1-3Manα1-6(Manα1-3)-Manβ1-4GlcNAc, Manα1-3Manα1-6(Manα1-2Manα1-3)Manβ1-4GlcNAc, and 11 isomers of (Manα1-2)0–4[Manα1-6(Manα1-3)Manα1-6(Manα1-3)Manβ1-4GlcNAc], are the same as those first published by Yamashita et al. (K. Yamashita, Y. Tachibana, K. Mihara, S. Okada, H. Yabuuchi, and A. Kobata, 1980, J. Biol. Chem.255, 5126–5133); a tetrasac-charide, Manα1-6(Manα1-3)Manβ1-4GlcNAc, is newly reported and several other structural possibilities are proposed.  相似文献   

19.
Three saponins, including two dimeric triterpenoid glucosides possessing an unusual skeleton, ivorenosides A and B, and a monomeric triterpenoid saponin (ivorenoside C), together with the known sericoside, were isolated from the bark of Terminalia ivorensis. Their structures were established on the basis of 1D and 2D NMR data, chemical methods and tandem MS–MS spectrometry as a dimer of β-d-glucopyranosyl-18,19-seco-2α,3β,19,19,24-pentahydroxyolean-12-en-28-oate and β-d-glucopyranosyl-2α,3β,19α,24-tetrahydroxyolean-12-en-28-oate (ivorenoside A, 1), a dimer of β-d-glucopyranosyl-18,19-seco-24-carboxyl-2α,3β,19,19-tetrahydroxyolean-12-en-28-oate and β-d-glucopyranosyl-2α,3β,19α,24-tetrahydroxyolean-12-en-28-oate (ivorenoside B, 2) and β-d-glucopyranosyl-2α,3β,19β,24-tetrahydroxyolean-11-oxo-olean-12-en-28-oate (ivorenoside C, 3). Ivorenosides A and B are the first examples in nature of dimeric triterpenoid saponins with a 18,19-seco E ring of one of the two units. These isolated compounds were evaluated for their antioxidant properties and further for their cytotoxic activity against four human cancer cell lines. Ivorenoside B and C exhibited scavenging activity against DPPH and ABTS+ radicals with IC50 values comparable with that of the standard drug Trolox and ivorenoside A showed antiproliferative activity against MDA-MB-231 and HCT116 human cancer cell lines with IC50 values of 3.96 and 3.43 μM, respectively.  相似文献   

20.
Three covalent anthocyanin–flavonol complexes (pigments 1–3) were extracted from the violet-blue flower of Allium ‘Blue Perfume’ with 5% acetic acid-MeOH solution, in which pigment 1 was the dominant pigment. These three pigments are based on delphinidin 3-glucoside as their deacylanthocyanin and were acylated with malonyl kaempferol 3-sophoroside-7-glucosiduronic acid or malonyl-kaempferol 3-p-coumaroyl-tetraglycoside-7-glucosiduronic acid in addition to acylation with acetic acid.By spectroscopic and chemical methods, the structures of these three pigments 1–3 were determined to be: pigment 1, (6I-O-(delphinidin 3-O-(3I-O-(acetyl)-β-glucopyranosideI)))(2VI-O-(kaempferol 3-O-(2II-O-(3III-O-(β-glucopyranosylV)-β-glucopyranosylIII)-4II-O-(trans-p-coumaroyl)-6II-O-(β-glucopyranosylIV)-β-glucopyranosideII)-7-O-(β-glucosiduronic acidVI))) malonate; pigment 2, (6I-O-(delphinidin 3-O-(3I-O-(acetyl)-β-glucopyranosideI)))(2VI-O-(kaempferol 3-O-(2II-O-β-glucopyranosylIII)-β-glucopyranosideII)-7-O-(β-glucosiduronic acidVI))); and pigment 3, (6I-O-(delphinidin 3-O-(3I-O-(acetyl)-β-glucopyranosideI)))(2VI-O-(kaempferol 3-O-(2II-O-(3III-O-(β-glucopyranosylV)-β-glucopyranosylIII)-4II-O-(cis-p-coumaroyl)-6II-O-(β-glucopyranosylIV)-β-glucopyranosideII)-7-O-(β-glucosiduronic acidVI))) malonate.The structure of pigment 2 was analogous to that of a covalent anthocyanin–flavonol complex isolated from Allium schoenoprasum where delphinidin was observed in place of cyanidin. The three covalent anthocyanin–flavonol complexes (pigment 1–3) had a stable violet-blue color with three characteristic absorption maxima at 540, 547 and 618 nm in pH 5–6 buffer solution. From circular dichroism measurement of pigment 1 in the pH 6.0 buffer solution, cotton effects were observed at 533 (+), 604 (−) and 638 (−) nm. Based on these results, these covalent anthocyanin–flavonol complexes were presumed to maintain a stable intramolecular association between delphinidin and kaempferol units closely related to that observed between anthocyanin and hydroxycinnamic acid residues in polyacylated anthocyanins. Additionally, an acylated kaempferol glycoside (pigment 4) was isolated from the same flower extract, and its structure was determined to be kaempferol 3-O-sophoroside-7-O-(3-O-(malonyl)-β-glucopyranosiduronic acid).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号