共查询到20条相似文献,搜索用时 0 毫秒
1.
Denis R. Burton Sofia Caria Bevan Marshall Michele Barry Marc Kvansakul 《Acta Crystallographica. Section D, Structural Biology》2015,71(8):1593-1603
Apoptosis is a key innate defence mechanism to eliminate virally infected cells. To counteract premature host‐cell apoptosis, poxviruses have evolved numerous molecular strategies, including the use of Bcl‐2 proteins, to ensure their own survival. Here, it is reported that the Deerpox virus inhibitor of apoptosis, DPV022, only engages a highly restricted set of death‐inducing Bcl‐2 proteins, including Bim, Bax and Bak, with modest affinities. Structural analysis reveals that DPV022 adopts a Bcl‐2 fold with a dimeric domain‐swapped topology and binds pro‐death Bcl‐2 proteins via two conserved ligand‐binding grooves found on opposite sides of the dimer. Structures of DPV022 bound to Bim, Bak and Bax BH3 domains reveal that a partial obstruction of the binding groove is likely to be responsible for the modest affinities of DPV022 for BH3 domains. These findings reveal that domain‐swapped dimeric Bcl‐2 folds are not unusual and may be found more widely in viruses. Furthermore, the modest affinities of DPV022 for pro‐death Bcl‐2 proteins suggest that two distinct classes of anti‐apoptotic viral Bcl‐2 proteins exist: those that are monomeric and tightly bind a range of death‐inducing Bcl‐2 proteins, and others such as DPV022 that are dimeric and only bind a very limited number of death‐inducing Bcl‐2 proteins with modest affinities. 相似文献
2.
Two new fungal metabolites, named koninginins L (1) and M (2), together with three known koninginins A (3), E (4), and trichodermaketone C (5), were isolated from solid fermentation products of Trichoderma koningii 8662. Koninginins L (1) and M (2) were elucidated by extensive spectroscopic methods, including 1D and 2D NMR, HR-EI-MS experiments, and the absolute configuration of compound 1 was confirmed by single-crystal X-ray diffraction analysis using the anomalous scattering of Cu Kα radiation. 相似文献
3.
Aoyagi M Zhai D Jin C Aleshin AE Stec B Reed JC Liddington RC 《Protein science : a publication of the Protein Society》2007,16(1):118-124
Poxviruses encode immuno-modulatory proteins capable of subverting host defenses. The poxvirus vaccinia expresses a small 14-kDa protein, N1L, that is critical for virulence. We report the crystal structure of N1L, which reveals an unexpected but striking resemblance to host apoptotic regulators of the B cell lymphoma-2 (Bcl-2) family. Although N1L lacks detectable Bcl-2 homology (BH) motifs at the sequence level, we show that N1L binds with high affinity to the BH3 peptides of pro-apoptotic Bcl-2 family proteins in vitro, consistent with a role for N1L in modulating host antiviral defenses. 相似文献
4.
J. Singh E. Garber H. Van Vlijmen M. Karpusas Y. M. Hsu Z. Zheng J. H. Naismith D. Thomas 《Protein science : a publication of the Protein Society》1998,7(5):1124-1135
CD40 Ligand (CD40L) is transiently expressed on the surface of T-cells and binds to CD40, which is expressed on the surface of B-cells. This binding event leads to the differentiation, proliferation, and isotype switching of the B-cells. The physiological importance of CD40L has been demonstrated by the fact that expression of defective CD40L protein causes an immunodeficiency state characterized by high IgM and low IgG serum levels, indicating faulty T-cell dependent B-cell activation. To understand the structural basis for CD40L/CD40 association, we have used a combination of molecular modeling, mutagenesis, and X-ray crystallography. The structure of the extracellular region of CD40L was determined by protein crystallography, while the CD40 receptor was built using homology modeling based upon a novel alignment of the TNF receptor superfamily, and using the X-ray structure of the TNF receptor as a template. The model shows that the interface of the complex is composed of charged residues, with CD40L presenting basic side chains (K143, R203, R207), and CD40 presenting acidic side chains (D84, E114, E117). These residues were studied experimentally through site-directed mutagenesis, and also theoretically using electrostatic calculations with the program Delphi. The mutagenesis data explored the role of the charged residues in both CD40L and CD40 by switching to Ala (K143A, R203A, R207A of CD40L, and E74A, D84A, E114A, E117A of CD40), charge reversal (K143E, R203E, R207E of CD40L, and D84R, E114R, E117R of CD40), mutation to a polar residue (K143N, R207N, R207Q of CD40L, and D84N, E117N of CD40), and for the basic side chains in CD40L, isosteric substitution to a hydrophobic side chain (R203M, R207M). All the charge-reversal mutants and the majority of the Met and Ala substitutions led to loss of binding, suggesting that charged interactions stabilize the complex. This was supported by the Delphi calculations which confirmed that the CD40/CD40L residue pairs E74-R203, D84-R207, and E117-R207 had a net stabilizing effect on the complex. However, the substitution of hydrophilic side chains at several of the positions was tolerated, which suggests that although charged interactions stabilize the complex, charge per se is not crucial at all positions. Finally, we compared the electrostatic surface of TNF/TNFR with CD40L/CD40 and have identified a set of polar interactions surrounded by a wall of hydrophobic residues that appear to be similar but inverted between the two complexes. 相似文献
5.
L. J. Beamer S. F. Carroll D. Eisenberg 《Protein science : a publication of the Protein Society》1998,7(4):906-914
Two related mammalian proteins, bactericidal/permeability-increasing protein (BPI) and lipopolysaccharide-binding protein (LBP), share high-affinity binding to lipopolysaccharide (LPS), a glycolipid found in the outer membrane of gram-negative bacteria. The recently determined crystal structure of human BPI permits a structure/function analysis, presented here, of the conserved regions of these two proteins sequences. In the seven known sequences of BPI and LBP, 102 residues are completely conserved and may be classified in terms of location, side-chain chemistry, and interactions with other residues. We find that the most highly conserved regions lie at the interfaces between the tertiary structural elements that help create two apolar lipid-binding pockets. Most of the conserved polar and charged residues appear to be involved in inter-residue interactions such as H-bonding. However, in both BPI and LBP a subset of conserved residues with positive charge (lysines 42, 48, 92, 95, and 99 of BPI) have no apparent structural role. These residues cluster at the tip of the NH2-terminal domain, and several coincide with residues known to affect LPS binding; thus, it seems likely that these residues make electrostatic interactions with negatively charged groups of LPS. Overall differences in charge and electrostatic potential between BPI and LBP suggest that BPI''s bactericidal activity is related to the high positive charge of its NH2-terminal domain. A model of human LBP derived from the BPI structure provides a rational basis for future experiments, such as site-directed mutagenesis and inhibitor design. 相似文献
6.
Kuwabara T Imajoh-Ohmi S 《Apoptosis : an international journal on programmed cell death》2004,9(4):467-474
Bacterial infection induces apoptotic cell death in human monoblastic U937 cells that have been pretreated with interferon gamma (U937IFN). Apoptosis occurs in a manner that is independent of bacterial virulence proteins. In the present study, we show that lipopolysaccharide (LPS), a membrane constituent of gram-negative bacteria, also induces apoptosis in U937IFN cells. LPS treatment led to the appearance of characteristic markers of apoptosis such as nuclear fragmentation and activation of caspases. While the caspase inhibitor Z-VAD-fmk prevented LPS-induced apoptosis as judged by its inhibition of nuclear fragmentation, it failed to inhibit cytochrome c release and loss of mitochondrial membrane potential. Transfection of peptides containing the BH4 (Bcl-2 homology 4) domain derived from the anti-apoptotic protein Bcl-XL blocked LPS-induced nuclear fragmentation and the limited digestion of PARP. These results suggest that LPS does not require caspase activation to induce mitochondrial dysfunction and that mitochondria play a crucial role in the regulation of LPS-mediated apoptosis in U937IFN cells. 相似文献
7.
P. Strop L. Changchien F. Maley W. R. Montfort 《Protein science : a publication of the Protein Society》1997,6(12):2504-2511
Thymidylate synthase (TS) is a long-standing target for anticancer drugs and is of interest for its rich mechanistic features. The enzyme catalyzes the conversion of dUMP to dTMP using the co-enzyme methylenetetrahydrofolate, and is perhaps the best studied of enzymes that catalyze carbon-carbon bond formation. Arg 126 is found in all TSs but forms only 1 of 13 hydrogen bonds to dUMP during catalysis, and just one of seven to the phosphate group alone. Despite this, when Arg 126 of TS from Escherichia coli was changed to glutamate (R126E), the resulting protein had kcat reduced 2000-fold and Km reduced 600-fold. The crystal structure of R126E was determined under two conditions--in the absence of bound ligand (2.4 A resolution), and with dUMP and the antifolate CB3717 (2.2 A resolution). The first crystals, which did not contain dUMP despite its presence in the crystallization drop, displayed Glu 126 in a position to sterically and electrostatically interfere with binding of the dUMP phosphate. The second crystals contained both dUMP and CB3717 in the active site, but Glu 126 formed three hydrogen bonds to nearby residues (two through water) and was in a position that partially overlapped with the normal phosphate binding site, resulting in a approximately 1 A shift in the phosphate group. Interestingly, the protein displayed the typical ligand-induced conformational change, and the covalent bond to Cys 146 was present in one of the protein's two active sites. 相似文献
8.
Differential scanning calorimetry (DSC), fluorescence polarization and X-ray diffraction were per-formed to investigate the kinetics of the micellar to the lamellar phase transition of dipalmitoylphosphatidylcholine/1-palmitoylphosphatidylcholine (16:0 LPC/DPPC) liposomes at gel phase. With a 16:0 LPC concentration up to 27 mol% only the sharp main transition with relatively high enthalpy (△H) values of DPPC was observed. Increasing 16 : 0 LPC concentration, the phase transition was broadened and the transition enthalpy was decreased and finally totally disappeared. The fluorescence probes of 3AS, 9AS, 12AS, and 16AP were employed, respectively, to detect the mo-bility of various sites of carbon chains of DPPC or 16:0 LPC/DPPC liposomes. It was shown that DPPC liposomes formed in the absence of 16:0 LPC always had a fluidity gradient in both gel and liquid-crystalline phase, while in the presence of 14.1 mol% and 27.0 mol% 16:0 LPC in the mixtures, the fluidity gradient tended to disappear below 40℃: 相似文献
9.
Morales I Carbajal MA Bohn S Holzer D Kato SE Greco FA Moussatché N Krijnse Locker J 《Traffic (Copenhagen, Denmark)》2008,9(8):1283-1298
We previously showed that infection with vaccinia virus (VV) induces cell motility, characterized by contractility and directed migration. Motility is temporally regulated because cells are motile immediately after infection, whereas late in infection motility ceases and cells resettle. Motility and its cessation are accompanied by temporal rearrangements of both the microtubule and the actin networks. Because the F11L gene has previously been implicated in VV-induced migration, we now explore the role of F11L in contractility, migration, the cessation of motility and the cytoskeletal rearrangements. By live cell imaging using a VV that lacks an intact F11L gene, we show that F11L facilitates cell detachment and is required for migration but not for contractility. By light microscopy, F11L expression induces a remodeling of the actin, but not the microtubule, network. The lack of migration correlates with smaller plaques, indicating that this process facilitates cell-to-cell spreading of VV. Late in infection, when motility ceases, cells re-establish cell-to-cell contacts in an F11L-independent manner. We finally show that VV-induced motility and its cessation correlate with a temporal regulation of the guanosine triphosphatase RhoA as well as the expression levels of F11L during the infectious cycle. 相似文献
10.
Carbonic anhydrase IX: Biochemical and crystallographic characterization of a novel antitumor target
Giuseppina De Simone Claudiu T. Supuran 《Biochimica et Biophysica Acta - Proteins and Proteomics》2010,1804(2):404-409
Isoform IX of the zinc enzyme carbonic anhydrase (CA, EC 4.2.1.1), CA IX, is a transmembrane protein involved in solid tumor acidification through the HIF-1α activation cascade. CA IX has a very high catalytic activity for the hydration of carbon dioxide to bicarbonate and protons, even at acidic pH values (of around 6.5), typical of solid, hypoxic tumors, which are largely unresponsive to classical chemo- and radiotherapy. Thus, CA IX is used as a marker of tumor hypoxia and as a prognostic factor for many human cancers. CA IX is involved in tumorigenesis through many pathways, such as pH regulation and cell adhesion control. The X-ray structure of the catalytic domain of CA IX has been recently reported, being shown that CA IX has a typical α-CA fold. However, the CA IX structure differs significantly from the other CA isozymes when the protein quaternary structure is considered. Thus, two catalytic domains of CA IX associate to form a dimer, which is stabilized by the formation of an intermolecular disulfide bond. The active site clefts and the proteoglycan (PG) domains are located on one face of the dimer, while the C-termini are located on the opposite face to facilitate protein anchoring to the cell membrane. As all mammalian CAs, CA IX is inhibited by several main classes of inhibitors, such as the inorganic anions, the sulfonamides and their bioisosteres (sulfamates, sulfamides, etc.), the phenols, and the coumarins. The mechanism of inhibition with all these classes of compounds is understood at the molecular level, but the sulfonamides and their congeners have important applications. It has been recently shown that both in vitro, in cell cultures, as well as in animals with transplanted tumors, CA IX inhibition with sulfonamides lead to a return of the extracellular pH to more normal values, which leads to a delay in tumor growth. As a consequence, CA IX represents a promising antitumor target for the development of anticancer agents with an alternative mechanism of action. 相似文献
11.
《Journal of enzyme inhibition and medicinal chemistry》2013,28(6):981-988
AbstractThe single-crystal structure of anagliptin, N-[2-({2-[(2S)-2-cyanopyrrolidin-1-yl]-2-oxoethyl}amino)-2-methylpropyl]-2-methylpyrazolo[1,5-a]pyrimidine-6-carboxamide, was determined. Two independent molecules were held together by intermolecular hydrogen bonds, and the absolute configuration of the 2-cyanopyrrolidine ring delivered from l-prolinamide was confirmed to be S. The interactions of anagliptin with DPP-4 were clarified by the co-crystal structure solved at 2.85?Å resolution. Based on the structure determined by X-ray crystallography, the potency and selectivity of anagliptin were discussed, and an SAR study using anagliptin derivatives was performed. 相似文献
12.
Sonia M. de Freitas Hiroaki Ikemoto Manuel M. Ventura 《Journal of Protein Chemistry》1999,18(3):307-313
The binding of -chymotrypsin to black-eyed pea trypsin/chymotrypsin inhibitor (BTCI) has been studied using the inhibitory activity against the enzyme and the formation of the complex enzyme/inhibitor followed by measurements of fluorescence polarization. Apparent equilibrium constants were estimated for several temperatures and the values obtained range from 0.32 × 107 to 1.36 × 107 M–1. The following values were found from van't Hoff plots: Hvh° = 10.8 kcal mol-1 (from inhibitory assays) and 11.1 kcal mol–1 (from fluorescence polarization); S° = 67.9 and = 67.8 kcal K–1 mol–1, respectively. Calorimetric binding enthalpy was determined (corrected for the ionization heat of the buffer) and the resulting value was Hcal° = 4.9 kcal mol-1. These results indicate that the binding of chymotrypsin to BTCI is an entropically driven process. 相似文献
13.
Structure of the thermolabile mutant aldolase B, A149P: molecular basis of hereditary fructose intolerance 总被引:2,自引:0,他引:2
Hereditary fructose intolerance (HFI) is a potentially lethal inborn error in metabolism caused by mutations in the aldolase B gene, which is critical for gluconeogenesis and fructose metabolism. The most common mutation, which accounts for 53% of HFI alleles identified worldwide, results in substitution of Pro for Ala at position 149. Structural and functional investigations of human aldolase B with the A149P substitution (AP-aldolase) have shown that the mutation leads to losses in thermal stability, quaternary structure, and activity. X-ray crystallography is used to reveal the structural basis of these perturbations. Crystals of AP-aldolase are grown at two temperatures (4 degrees C and 18 degrees C), and the structure solved to 3.0 angstroms resolution, using the wild-type structure as the phasing model. The structures reveal that the single residue substitution, A149P, causes molecular disorder around the site of mutation (residues 148-159), which is propagated to three adjacent beta-strand and loop regions (residues 110-129, 189-199, 235-242). Disorder in the 110-129-loop region, which comprises one subunit-subunit interface, provides an explanation for the disrupted quaternary structure and thermal instability. Greater structural perturbation, particularly at a Glu189-Arg148 salt bridge in the active-site architecture, is observed in the structure determined at 18 degrees C, which could explain the temperature-dependent loss in activity. The disorder revealed in these structures is far greater than that predicted by homology modeling and underscores the difficulties in predicting perturbations of protein structure and function by homology modeling alone. The AP-aldolase structure reveals the molecular basis of a hereditary disease and represents one of only a few structures known for mutant proteins at the root of the thousands of other inherited disorders. 相似文献
14.
The three major subgroups of the Bcl-2 family, including the prosurvival Bcl-2-like proteins, the proapoptotic Bcl-2 homology (BH)3-only proteins and Bax/Bak proteins, regulate the mitochondrial apoptotic pathway. In addition, some outliers within the Bcl-2 family do not fit into these subgroups. One of them, Bcl-G, has a BH2 and a BH3 region, and was proposed to trigger apoptosis. To investigate the physiological role of Bcl-G, we have inactivated the gene in the mouse and generated monoclonal antibodies to determine its expression. Although two isoforms of Bcl-G exist in human, only one is found in mice. mBcl-G is expressed in a range of epithelial as well as in dendritic cells. Loss of Bcl-G did not appear to affect any of these cell types. mBcl-G only binds weakly to prosurvival members of the Bcl-2 family, and in a manner that is independent of its BH3 domain. To understand what the physiological role of Bcl-G might be, we searched for Bcl-G-binding partners through immunoprecipitation/mass spectroscopy and yeast-two-hybrid screening. Although we did not uncover any Bcl-2 family member in these screens, we found that Bcl-G interacts specifically with proteins of the transport particle protein complex. We conclude that Bcl-G most probably does not function in the classical stress-induced apoptosis pathway, but rather has a role in protein trafficking inside the cell. 相似文献
15.
M Giam J D Mintern G J P Rautureau M G Hinds A Strasser P Bouillet 《Cell death & disease》2012,3(8):e378
Bcl-G is an evolutionarily conserved member of the Bcl-2 family of proteins that has been implicated in regulating apoptosis and cancer. We have generated monoclonal antibodies that specifically recognise mouse Bcl-G and have used these reagents to analyse its tissue distribution and subcellular localisation using western blotting, immunohistochemistry and immunofluorescence. We found that Bcl-G predominantly resides in the cytoplasm and is present in a wide range of mouse tissues, including the spleen, thymus, lung, intestine and testis. Immunohistochemical analyses revealed that Bcl-G is expressed highly in mature spermatids in the testis, CD8+ conventional dendritic cells (DCs) in hematopoietic tissues and diverse epithelial cell types, including those lining the gastrointestinal and respiratory tracts. The Bcl-G monoclonal antibodies represent new tools for studying this protein, using a variety of techniques, including immunoprecipitation and flow cytometry. 相似文献
16.
Janis Leitans Agnese Sprudza Muhammet Tanc Igor Vozny Raivis Zalubovskis Kaspars Tars Claudiu T. Supuran 《Bioorganic & medicinal chemistry》2013,21(17):5130-5138
We report here a series of 2-thiophene-sulfonamides incorporating 1-substituted aryl-1,2,3-triazolyl moieties, prepared by click chemistry from 5-ethynylthiophene-2-sulfonamide and substituted aryl azides. The new sulfonamides were investigated as inhibitors of the zinc metalloenzyme CA (EC 4.2.1.1), and more specifically against the human (h) cytosolic isoforms hCA I and II and the transmembrane, tumor-associated ones hCA IX and XII: The new compounds were medium–weak hCA I inhibitors (KIs in the range of 224–7544 nM), but were compactly, highly effective, low nanomolar hCA II inhibitors (KIs of 2.2–7.7 nM). The tumor-associated hCA IX was inhibited with KIs ranging between 5.4 and 811 nM, whereas hCA XII with inhibition constants in the range of 3.4–239 nM. The X-ray crystal structure of the adducts of two such compounds bound to hCA II (one incorporating 1-naphthyl, the other one 3-cyanophenyl moieties) evidenced the reasons of the high affinity for hCA II. Highly favorable, predominantly hydrophobic interactions between the sulfonamide scaffold and the hCA II active site were responsible for the binding, in addition to the coordination of the sulfamoyl moiety to the zinc ion. The tails of the two inhibitors adopted very diverse orientations when bound to the active site, with the naphthyltriazolyl moiety orientated towards the hydrophobic half of the active site, and the 3-cyanophenyl one pointing towards the hydrophilic half. These data may be used for the structure-based drug design of even more effective hCA II inhibitors, with potential use as antiglaucoma agents or as diuretics. 相似文献
17.
Caspase family proteases and apoptosis 总被引:45,自引:0,他引:45
Apoptosis, or programmed cell death, is an essential physiological process that plays a critical role in development and tissue homeostasis. The progress of apoptosis is regulated in an orderly way by a series of signal cascades under certain circumstances. The caspase-cascade system plays vital roles in the induction, transduction and amplification of intracellular apoptotic signals. Caspases, closely associated with apoptosis, are aspartate-specific cysteine proteases and members of the interleukin- 1 ~-converting enzyme family. The activation and function of caspases, involved in the delicate caspase-cascade system, are regu- lated by various kinds of molecules, such as the inhibitor of apoptosis protein, Bcl-2 family proteins, calpain, and Ca^2+. Based on the latest research, the members of the caspase family, caspase-cascade system and caspase-regulating molecules involved in apoptosis are reviewed. 相似文献
18.
Shyamasri Biswas Robert McKenna Claudiu T. Supuran 《Bioorganic & medicinal chemistry letters》2013,23(20):5646-5649
The high resolution crystal structure of 5-(2-thienylacetamido)-1,3,4-thiadiazole-2-sulfonamide complexed to human (h) carbonic anhydrase (CA, EC 4.2.1.1) isoform hCA II is reported. The compound binds in a similar manner with acetazolamide when the sulfamoyl–thiadiazolyl–acetamido fragment of the two compounds is considered, but the thienyl tail was positioned in the subpocket 2, rarely observed by other investigated CA inhibitors. This positioning allows interaction with amino acid residues (such as Asn67, Ile91, Gln92 and Val121 which are variable in other isoforms of medicinal chemistry interest, such as hCA I, IX and XII. Indeed, the investigated sulfonamide was a medium potency hCA I and II inhibitor but was highly effective as a hCA IX and XII inhibitor. This different behavior with respect to acetazolamide (a promiscuous inhibitor of all these isoforms) has been explained by resolving the crystal structure, and may be used to design more isoform-selective compounds. 相似文献
19.
20.
Fodor K Harmat V Hetényi C Kardos J Antal J Perczel A Patthy A Katona G Gráf L 《Journal of molecular biology》2005,350(1):156-169
We have previously shown that a trypsin inhibitor from desert locust Schistocerca gregaria (SGTI) is a taxon-specific inhibitor that inhibits arthropod trypsins, such as crayfish trypsin, five orders of magnitude more effectively than mammalian trypsins. Thermal denaturation experiments, presented here, confirm the inhibition kinetics studies; upon addition of SGTI the melting temperatures of crayfish and bovine trypsins increased 27 degrees C and 4.5 degrees C, respectively. To explore the structural features responsible for this taxon specificity we crystallized natural crayfish trypsin in complex with chemically synthesized SGTI. This is the first X-ray structure of an arthropod trypsin and also the highest resolution (1.2A) structure of a trypsin-protein inhibitor complex reported so far. Structural data show that in addition to the primary binding loop, residues P3-P3' of SGTI, the interactions between SGTI and the crayfish enzyme are also extended over the P12-P4 and P4'-P5' regions. This is partly due to a structural change of region P10-P4 in the SGTI structure induced by binding of the inhibitor to crayfish trypsin. The comparison of SGTI-crayfish trypsin and SGTI-bovine trypsin complexes by structure-based calculations revealed a significant interaction energy surplus for the SGTI-crayfish trypsin complex distributed over the entire binding region. The new regions that account for stronger and more specific binding of SGTI to crayfish than to bovine trypsin offer new inhibitor sites to engineer in order to develop efficient and specific protease inhibitors for practical use. 相似文献