首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The quinic acid derivatives (including 4-feruoyl quinic and 5-ferruoyl quinic acids characterized for first time in propolis samples) and other phenolic compounds were quantified in thirteen Brazilian propolis samples by HPLC analysis. For chemometrical analysis, the distribution of quinic acid derivatives and other phenolic compounds were considered. The results suggest that the Brazilian propolis with floral origin from Citrus sp. have the highest concentration of the quinic acid derivatives (between 11.0 to 58.4 mg/mg of the dried crude hydroalcoholic extract) and therefore would probably show a more effective hepatoprotective activity.  相似文献   

2.
The colored compound produced by the reaction of periodate oxidation product of quinic acid with sodium nitroprusside and piperazine can be used as a quantitative measure of the quinic acid. The curve is linear for the acid examined in the range of 25 to 150,μg of quinic acid per 1 ml. Hence, the reaction provides a convenient method for the determination of the micro quantities of quinic acid obtained from tobacco extracts fractionated by chromatography on paper or ion exchange-resin column. The content of quinic acid in flue-cured tobacco was 0.23 per cent to dry matter.  相似文献   

3.
By using a new high-pressure liquid chromatography assay, the increase in urinary hipprate following ingestion of shikimic, quinic, and cyclohexanecarboxylic acid was studied to quantitate the extent of aromatization in germfree, gnotobiotic, and converitonal rats. Germfree rats aromatized 2% of a single dose of shikimic acid or quinic acid and 44% of cyclohexanecarboxylic acid. Conventional rats aromatized all three compounds; shikimic (12%), quinic (12%), and cyclohexanecarboxylic acid (61%). A human fecal flora was fed to otherwise germfree rats to determine the degree of association and the resulting effect upon the metabolism of shikimic, quinic, and cyclohexanecarboxylic acids in vivo. Following establishment of the human microflora and subsequent feedings of shikimic or quinic acids, excretion of urinary hippurate was five to seven times greater (10–15% of the dose) than in germfree rats fed the same acids. The results suggest that the intestinal flora is needed to metabolize the shikimic acid to substrate(s) (probably cyclohexanecarboxylic acid). This substrate can then be aromatized by mammalian enzymes.  相似文献   

4.
Etiolated seedlings of Phaseolus mungo were fed with 14C-glucoseand the incorporation of 14C into shikimic and quinic acidswas determined. The incorporation of 14C into shikimic acidwas enhanced when non-labeled shikimic, quinic or 5-dehydroquinicacid was not significantly affected by these alicyclic acids.To examine whether the difference in biosynthetic patterns betweenshikimic and quinic acids is common in higher plants, flowersand leaves of several plants were fed with 14C-glucose or 14C-erythroseand the effciencies of these labeled sugars as precursors ofshikimic and quinic acids were compared. In seven of eight plantsamples, erythrose was superior to glucose as the precursorof shikimic acid, while there was no great difference in theefficiency of either sugar as the precursor of quinic acid.The possibility that the biosynthetic mechanism for quinic aciddiffers from that for shikimic acid is discussed. (Received September 12, 1973; )  相似文献   

5.
1. It is shown by means of filter-paper chromatograms preparedat intervals during the oxidation of quinic acid by hydrogenperoxide that at least six acids appear in the reaction liquid. 2. One of these acids is shown to be citric acid, and the oxidationof citric acid is shown to account for a further two of theacids resulting from the oxidation of quinic acid. 3. After prolonged oxidation (by H2O2) of both quinic and citricacids one acid predominates. This acid is proved by isolationand characterization to be malonic acid. 4. Evidence is produced which suggests that acetonedicarboxylicacid is an intermediate in the oxidation of citric acid (and,therefore, of quinic acid) to malonic acid  相似文献   

6.
1. The fate of (−)-quinic acid has been investigated in 22 species of animals including man. 2. In man and three species of Old World monkeys, i.e. rhesus monkey, baboon and green monkey, oral quinic acid was extensively aromatized (20–60%) and excreted in the urine as hippuric acid, which was determined fluorimetrically. 3. In three species of New World monkeys, i.e. squirrel monkey, spider monkey and capuchin, in three species of lemurs, i.e. bushbaby, slow loris and tree shrew, in the dog, cat, ferret, rabbit, rat, mouse, guinea pig, hamster, lemming, fruit bat, hedgehog and pigeon, oral quinic acid was not extensively aromatized (0–5%). 4. In the rhesus monkey, injected quinic acid was not aromatized, but largely excreted unchanged. 5. In rhesus monkeys pretreated with neomycin to suppress gut flora, the aromatization of oral quinic acid was considerably suppressed. 6. In rats and rhesus monkeys [14C]quinic acid was used and this confirmed its low aromatization in rats and its high aromatization in the monkeys. 7. Shikimic acid given orally was excreted as hippuric acid (26–56%) in rhesus monkeys, but not in rats. 8. The results support the view that quinic acid and shikimic acid are aromatized by the gut flora in man and the Old World monkeys.  相似文献   

7.
During aerobic autolysis and in commercial curing, the bulk proteins of tobacco leaves become coupled with quinic acid, presumably in consequence of coupling of chlorogenic acid congeners with lysine ε-NH2 groups. Quinic acid derivatives, prepared from acid hydrolysates of such altered proteins, were identified by GC-MS. Such proteins were also hydrogenated over Rh/Al2O3 with a view to stabilizing the hypothetical linkages. Difficulties in removing contaminant Al had to be overcome. Evidence was then obtained (by GLC of derivatives) for several components, in acid hydrolysates of hydrogenated altered proteins, which were neither normal hydrogenation products of the common amino acids nor derivatives of quinic acid. Details of the chromatograms and mass spectra of quinic acid derivatives are provided in a supplementary publications.  相似文献   

8.
The influenza virus neuraminidase (NA) is essential for viral infection and offers a potential target for antiviral drug development. We prepared a carbocyclic sialic acid analogue, potentially able to inhibit NA. Its structure is an analogue of the transition-state of the reaction catalysed by NA. As starting material, quinic acid was selected owing to its ready availability and its stereochemical feature suitable for the target structure. The quinic acid was first converted in the shikimic acid; then two of the three hydroxyl functions of this product were selectively functionalised to obtain the target molecule (3R,4S,5R)-4-acetamido-3-guanidino-5-hydroxycyclohex-1-ene-1-carboxylic acid.  相似文献   

9.
The leaves of Saussurea triangulata (Compositae) have been eaten with rice as a wrapping vegetable for preventing neuro-aging. However, the components responsible for the neuroprotective effects of S. triangulata still remain unidentified. In the process of investigating the neuroprotective activity of S. triangulata, we found that a methanol extract of S. triangulata exhibited significant protection against glutamate-induced toxicity in primary cultured rat cortical cells. Three quinic acid derivatives were isolated from the n-BuOH fraction of S. triangulata. Among these three quinic acid derivatives, methyl 5-caffeoylquinic acid (3) exhibited significant neuroprotective activities against glutamate-induced toxicity exhibiting cell viability of about 50%, at concentrations ranging from 0.1 microM to 10 microM. Therefore, the neuroprotective effect of S. triangulata might be due to the inhibition of glutamate-induced toxicity by the quinic acid derivatives from S. triangulata.  相似文献   

10.
Mesophyll cells isolated enzymatically from Vigna angularisleaves were fed 14Cglucose or 14C-erythrose and the time-courseof 14C incorporation into shikimic and quinic acids was examined.When 14C-glucose was fed to the cells, the highest radioactivityin quinic acid was observed after 10 hr of incubation, whilethat in shikimic acid was after 14 hr. In the experiment with14C-erythrose, the radioactivity in shikimic acid rose strikinglyup to the 3rd hour, but 14C in quinic acid increased graduallyduring the incubation. The incorporation of 14C into shikimicacid was enhanced when unlabeled shikimic or quinic acid wassupplied to the cells simultaneously with either 14C-glucoseor 14G-erythrose, whereas that into quinic acid was not significantlyincreased by these alicyclic acids. The difference in incorporationrate of 14C into quinic acid from that into shikimic acid wasmore conspicuous in the isolated mesophyll cells than in theepicotyls of V. angularis seedlings. 1 Present address: Department of Biology, Faculty of Science,Kumamoto University, Kumamoto 860, Japan. (Received September 22, 1978; )  相似文献   

11.
The first three steps in quinic acid degradation in Aspergillus nidulans are catalysed by highly inducible enzymes encoded by a gene cluster regulated by an adjacent control region. Analysis of two non-inducible mutants has been done in diploid strains, where qutA8 is recessive and all three enzyme activities are fully induced in heterozygous qutA8/qutA+ diploids. In contrast, qutA4/qutA+ heterozygous diploids show semi-dominance of the mutant allele, giving markedly diminished growth on quinic acid and 30-40% decrease of enzyme induction. Strikingly, the qutA4/qutA8 heterozygous diploid grows to the same degree on quinic acid as the qutA4/qutA+ heterozygote and shows the same level of enzyme induction, whereas both the homozygous mutant diploids do not grow on quinic acid and show no enzyme induction. Therefore the two mutant genomes complement, identifying two distinct regulatory gene functions. A genetic model is proposed of a negatively acting gene (qutA) repressing expression of a positively acting gene (qutD, previously designated qutA8+) whose product is in turn required for expression of the three structural genes. The qutA4 mutation is interpreted to produce an altered repressor insensitive to quinic acid, and the qutD8 mutation the loss of activator protein. Close similarity in the regulation of the quinic acid gene cluster in Neurospora crassa suggests that the two types of control mutation, qalS and qalF, described for N. crassa may also reflect two regulatory genes.  相似文献   

12.
13.
Quinate:NAP(P)+-oxidoreductase (QORase, EC 1.1.1.24), which catalyzes the interconversion of quinic and 3-dehydroquinic acids, was purified from the needles and developing xylem cells of Larix sibirica. The enzymes from these two tissues were partially characterized and compared. QORase from needles had optimum pH at 9.0 and apparent Km values of 1.84 mM for quinic acid and 0.19 mM for NADP+. The enzyme was activated by phosphoenolpyruvate. Gallic and protocatechuic acids were formed in a reaction mixture of purified enzyme from needles as final products of quinic acid transformation. QORase from developing xylem cells showed pH optimum at 10.0 and had apparent Km values of 0.70 mM for quinic acid and 0.05 mM for NADP+. The enzyme was not affected by PEP. The divalent cations Co2+ and Mn2+ at least doubled activity of QORase from both sources but Mg2+ affected the enzyme from needles only. The spatial organization and regulation of quinic acid metabolism in the autotrophic and heterotrophic cells of conifers and the role of QORase in this process are discussed.  相似文献   

14.
The antioxidant properties of galloyl quinic derivatives isolated from Pistacia lentiscus L. leaves have been investigated by means of Electron Paramagnetic Resonance spectroscopy (EPR) and UV-Vis spectrophotometry. Antioxidant properties have been also estimated using the biologically relevant LDL test. The scavenger activities of gallic acid, 5- O -galloyl, 3,5- O -digalloyl, 3,4,5- O -trigalloyl quinic acid derivatives, have been estimated against 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical, superoxide ( O 2 - ) radical, and hydroxyl (OH) radical. On the whole, the scavenger activity raised as the number of galloyl groups on the quinic acid skeleton increased. The half-inhibition concentrations (IC 50 ) of di- and tri-galloyl derivatives did not exceed 30 μM for all the tested free radicals. All the tested metabolites strongly reduced the oxidation of low-density lipoproteins (LDL), following a trend similar to that observed for the scavenger ability against OH radical.  相似文献   

15.
16.
Summary The effect of ozone, needle age, and season on the pH of homogenate and acid contents of Scots pine and Norway spruce needles is presented. In addition enzyme activities of cytochrome C-oxidase (cyt. C-ox), phosphoenolpyruvate-carboxylase (PEPC), shikimic acid-dehydrogenase (SHDH) and malate-dehydrogenase (MDH) were measured in Scots pine needles. In freshly sprouted spruce needles the level of quinic acid is high and the pH of the needle homogenate is low. Shikimic acid starts at low levels, increases with increasing needle age and becomes dominant, whereas the quinic acid content decreases. Malic acid has a marked seasonal trend; no trend was found in citric acid. Ozone (200 g/m3) decreased shikimic acid and quinic acid, whereas pH, malic acid and citric acid increased. Ozone (100 g/m3) had a similar effect, except in the current-year spruce needles. In Scots pine needles ozone led to increased enzymatic activities of cyt. C-ox, PEPC and SHDH, and a decrease in the activity of MDH. This effect was more pronounced in summer than in autumn, but the visible damage was greater in autumn. These effects can be found with other stresses and are not specific for ozone.  相似文献   

17.
Chromatographic separation of a crude extract obtained from aerial parts of the Mongolian medicinal plant Scorzonera radiata yielded fifteen natural compounds, including two new flavonoids and one new quinic acid congener, as well as four flavones and eight quinic acid derivatives, all of which are known natural compounds. The structures of the isolated compounds were elucidated on the basis of NMR (1H, 13C, COSY, HMBC, ROESY, and TOCSY) and mass spectrometric data. The antioxidant activities of the quinic acid derivatives were evaluated by the DPPH assay.  相似文献   

18.
Strategies for the preparation of polycarbonates, derived from natural polyhydroxy monomeric repeat units, were developed for biosourced polycarbonates based on quinic acid. The design and synthesis of regioselectively tert-butyldimethylsilyloxy (TBS)-protected 1,4- and 1,5-diol monomers of quinic acid were followed by optimization of their copolymerizations with phosgene, generated in situ from trichloromethyl chloroformate, to yield protected poly(1,4-quinic acid carbonate) and poly(1,5-quinic acid carbonate). The molecular weights reached ca. 7.6 kDa, corresponding to degrees of polymerization of ca. 24, with polydispersities ranging from 2.0 to 3.5, as measured by SEC using tetrahydrofuran as the eluent and with polystyrene calibration standards. Partially because of the presence of the bicyclic backbone, each regioisomeric poly(quinic acid carbonate) exhibited relatively high glass-transition temperatures, 209 °C for poly(1,4-quinic acid carbonate) and 229 °C for poly(1,5-quinic acid carbonate). Removal of the TBS-protecting groups was studied under mild conditions to achieve control over potential competing reactions involving polymer degradation, which could include cleavage of lactones within the repeat units, carbonate linkages, or both between the repeat units. Full deprotection was not achieved without some degree of polymer degradation. The regiochemistry of the monomer showed significant impact on the reactivity during deprotection and also on the thermal properties, with the 1,5-regioisomeric polymer having lower reactivity and giving higher T(g) values, in comparison with the 1,4-regioisomer. Each regioisomer underwent a 10-20 °C increase in T(g) upon partial removal of the TBS-protecting groups. As the extent of deprotection increased, the solubility decreased. Ultimately, at long deprotection reaction times, the solubility increased and the T(g) decreased because of significant degradation of the polymers.  相似文献   

19.
When either trans-cinnamic acid-2-14C or quinic acid-G-3H wasadministered to sweet potato root discs, each compound was incorporatedinto chlorogenic acid. Hydrolysis analysis revealed that trans-cinnamicacid-2-14C and quinic acid-G-3H were selectively incorporatedinto the aromatic and non-aromatic moieties of chlorogenic acid,respectively. Quinic acid-G-3H was considered a more efficient precursor thantrans-cinnamic acid-2-14C, based on data of dilution values,incorporation percents and pool sizes in the tissue. No conjugatesof trans-cinnamic acid and quinic acid were detected in discsadministered trans-cinnamic acid-2-14C or quinic acid-G-3H.From these experimental results, a possible biosynthetic pathwayfor chlorogenic acid has been proposed. 1 This paper constitutes Part 98 of the Phytopathological Chemistryof Sweet Potato with Black Rot or Injury. (Received November 2, 1971; )  相似文献   

20.
Leaves of 83 angiosperms have been made surveyed for quinic and shikimic acids. The quinic acid content was higher in woody dicotyledons than in herbaceous dicotyledons or in the monocotyledons, substantiating the view that its presence may be correlated with the lignification in plants.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号