首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Small ubiquitin-related modifiers (SUMOs) regulate diverse cellular processes through their covalent attachment to target proteins. Vertebrates express three SUMO paralogs: SUMO-1, SUMO-2, and SUMO-3 (SUMO-2 and SUMO-3 are approximately 96% identical and referred to as SUMO-2/3). SUMO-1 and SUMO-2/3 are conjugated, at least in part, to unique subsets of proteins and thus regulate distinct cellular pathways. However, how different proteins are selectively modified by SUMO-1 and SUMO-2/3 is unknown. We demonstrate that BLM, the RecQ DNA helicase mutated in Bloom syndrome, is preferentially modified by SUMO-2/3 both in vitro and in vivo. Our findings indicate that non-covalent interactions between SUMO and BLM are required for modification at non-consensus sites and that preferential SUMO-2/3 modification is determined by preferential SUMO-2/3 binding. We also present evidence that sumoylation of a C-terminal fragment of HIPK2 is dependent on SUMO binding, indicating that non-covalent interactions between SUMO and target proteins provide a general mechanism for SUMO substrate selection and possible paralog-selective modification.  相似文献   

2.
3.
Thymine DNA glycosylase (TDG) initiates the repair of G·T mismatches that arise by deamination of 5-methylcytosine (mC), and it excises 5-formylcytosine and 5-carboxylcytosine, oxidized forms of mC. TDG functions in active DNA demethylation and is essential for embryonic development. TDG forms a tight enzyme-product complex with abasic DNA, which severely impedes enzymatic turnover. Modification of TDG by small ubiquitin-like modifier (SUMO) proteins weakens its binding to abasic DNA. It was proposed that sumoylation of product-bound TDG regulates product release, with SUMO conjugation and deconjugation needed for each catalytic cycle, but this model remains unsubstantiated. We examined the efficiency and specificity of TDG sumoylation using in vitro assays with purified E1 and E2 enzymes, finding that TDG is modified efficiently by SUMO-1 and SUMO-2. Remarkably, we observed similar modification rates for free TDG and TDG bound to abasic or undamaged DNA. To examine the conjugation step directly, we determined modification rates (kobs) using preformed E2∼SUMO-1 thioester. The hyperbolic dependence of kobs on TDG concentration gives kmax = 1.6 min−1 and K1/2 = 0.55 μm, suggesting that E2∼SUMO-1 has higher affinity for TDG than for the SUMO targets RanGAP1 and p53 (peptide). Whereas sumoylation substantially weakens TDG binding to DNA, TDG∼SUMO-1 still binds relatively tightly to AP-DNA (Kd ∼50 nm). Although E2∼SUMO-1 exhibits no specificity for product-bound TDG, the relatively high conjugation efficiency raises the possibility that E2-mediated sumoylation could stimulate product release in vivo. This and other implications for the biological role and mechanism of TDG sumoylation are discussed.  相似文献   

4.
Conjugation of the small ubiquitin-like modifier SUMO-1/SMT3C/Sentrin-1 to proteins in vitro is dependent on a heterodimeric E1 (SAE1/SAE2) and an E2 (Ubc9). Although SUMO-2/SMT3A/Sentrin-3 and SUMO-3/SMT3B/Sentrin-2 share 50% sequence identity with SUMO-1, they are functionally distinct. Inspection of the SUMO-2 and SUMO-3 sequences indicates that they both contain the sequence psiKXE, which represents the consensus SUMO modification site. As a consequence SAE1/SAE2 and Ubc9 catalyze the formation of polymeric chains of SUMO-2 and SUMO-3 on protein substrates in vitro, and SUMO-2 chains are detected in vivo. The ability to form polymeric chains is not shared by SUMO-1, and although all SUMO species use the same conjugation machinery, modification by SUMO-1 and SUMO-2/-3 may have distinct functional consequences.  相似文献   

5.
Protein dynamics is regulated by an elaborate interplay between different post-translational modifications. Ubiquitin and ubiquitin-like proteins (Ubls) are small proteins that are covalently conjugated to target proteins with important functional consequences. One such modifier is SUMO, which mainly modifies nuclear proteins. SUMO contains a unique N-terminal arm not present in ubiquitin and other Ubls, which functions in the formation of SUMO polymers. Here, we unambiguously show that serine 2 of the endogenous SUMO-1 N-terminal protrusion is phosphorylated in vivo using very high mass accuracy mass spectrometry at both the MS and the MS/MS level and complementary fragmentation techniques. Strikingly, we detected the same phosphorylation in yeast, Drosophila and human cells, suggesting an evolutionary conserved function for this modification. The nearly identical human SUMO-2 and SUMO-3 isoforms differ in serine 2; thus, only SUMO-3 could be phosphorylated at this position. Our finding that SUMO can be modified may point to an additional level of complexity through modifying a protein-modifier.  相似文献   

6.
Su HL  Li SS 《Gene》2002,296(1-2):65-73
  相似文献   

7.
Ding H  Xu Y  Chen Q  Dai H  Tang Y  Wu J  Shi Y 《Biochemistry》2005,44(8):2790-2799
Small ubiquitin-related modifier SUMO-3 is a member of a growing family of ubiquitin-like proteins (Ubls). So far, four isoforms of SUMO have been identified in humans. It is generally known that SUMO modification regulates protein localization and activity. Previous structure and function studies have been mainly focused on SUMO-1. The sequence of SUMO-3 is 46% identical with that of SUMO-1; nevertheless, functional heterogeneity has been found between the two homologues. Here we report the solution structure of SUMO-3 C47S (residues 14-92) featuring the beta-beta-alpha-beta-beta-alpha-beta ubiquitin fold. Structural comparison shows that SUMO-3 C47S resembles ubiquitin more than SUMO-1. On the helix-sheet interface, a strong hydrophobic interaction contributes to formation of the globular and compact fold. A Gly-Gly motif at the C-terminal tail, extending away from the core structure, is accessible to enzymes and substrates. In vivo, SUMO modification proceeds via a multistep pathway, and Ubc9 plays an indispensable role as the SUMO conjugating enzyme (E2) in this process. To develop a better understanding of SUMO-3 conjugation, the Ubc9 binding surface on SUMO-3 C47S has been detected by chemical shift perturbation using NMR spectroscopy. The binding site mainly resides on the hydrophilic side of the beta-sheet. Negatively charged and hydrophobic residues of this region are highly or moderately conserved among SUMO family members. Notably, the negatively charged surface of SUMO-3 C47S is highly complementary in its electrostatic potentials and hydrophobicity to the positively charged surface of Ubc9. This work indicates dissimilarities between SUMO-3 and SUMO-1 in tertiary structure and provides insight into the specific interactions of SUMO-3 with its modifying enzyme.  相似文献   

8.
9.
SUMOs (small ubiquitin-related modifiers) are eukaryotic proteins that are covalently conjugated to other proteins and thereby regulate a wide range of important cellular processes. The molecular mechanisms by which SUMO modification influences the functions of most target proteins and cellular processes, however, remain poorly defined. A major obstacle to investigating the effects of SUMO modification is the availability of a system for selectively inducing the modification or demodification of an individual protein. To address this problem, we have developed a procedure using the rapamycin heterodimerizer system. This procedure involves co-expression of rapamycin-binding domain fusion proteins of SUMO and candidate SUMO substrates in living cells. Treating cells with rapamycin induces a tight association between SUMO and a single SUMO substrate, thereby allowing specific downstream effects to be analyzed. Using RanGAP1 as a model SUMO substrate, the heterodimerizer system was used to investigate the molecular mechanism by which SUMO modification targets RanGAP1 from the cytoplasm to nuclear pore complexes (NPCs). Our results revealed a dual role for Ubc9 in targeting RanGAP1 to NPCs: In addition to conjugating SUMO-1 to RanGAP1, Ubc9 is also required to form a stable ternary complex with SUMO-1 modified RanGAP1 and Nup358. As illustrated by our studies, the rapamycin heterodimerizer system represents a novel tool for studying the molecular effects of SUMO modification.  相似文献   

10.
Tatham MH  Kim S  Yu B  Jaffray E  Song J  Zheng J  Rodriguez MS  Hay RT  Chen Y 《Biochemistry》2003,42(33):9959-9969
Covalent posttranslational modification of target proteins with ubiquitin and ubiquitin-like proteins regulates many important cellular processes. However, the molecular mechanisms by which these proteins are activated and conjugated to substrates has yet to be fully understood. NMR studies have shown that the ubiquitin-like proteins SUMO-1, -2, and -3 interact with the same N-terminal region of the E2 conjugating enzyme Ubc9 with similar affinities. This is correlated to their almost identical utilization by Ubc9 in the SUMO conjugation pathway. To investigate the functional significance of this interaction, site-directed mutagenesis was used to alter residues in the SUMO binding surface of Ubc9, and the effect of the amino acid substitutions on binding and conjugation to SUMO-1 and target protein RanGAP1 was investigated by isothermal titration calorimetry and biochemical analysis. R13A/K14A and R17A/K18A mutations in Ubc9 disrupted the interaction with SUMO-1 but did not completely abolish the interaction with E1. While these Ubc9 mutants displayed a significantly reduced efficiency in the transfer of SUMO-1 from E1 to E2, their ability to recognize substrate and transfer SUMO-1 from E2 to the target protein was unaffected. These results suggest that the noncovalent binding site of SUMO-1 on Ubc9, although distant from the active site, is important for the transfer of SUMO-1 from the E1 to the E2. The conservation of E2 enzymes across the ubiquitin and ubiquitin-like protein pathways indicates that analogous N-terminal sites of E2 enzymes are likely to have similar roles in general.  相似文献   

11.
Over the past years, modification by covalent attachment of SUMO (small ubiquitin-like modifier) has been demonstrated for of a number of cellular and viral proteins. While increasing evidence suggests a role for SUMO modification in the regulation of protein-protein interactions and/or subcellular localization, most SUMO targets are still at large. In this report we show that Topors, a Topoisomerase I and p53 interacting protein of hitherto unknown function, presents a novel cellular target for SUMO-1 modification. In a yeast two-hybrid system, Topors interacted with both SUMO-1 and the SUMO-1 conjugating enzyme UBC9. Multiple SUMO-1 modified forms of Topors could be detected after cotransfection of exogenous SUMO-1 and Topors induced the colocalization of a YFP tagged SUMO-1 protein in a speckled pattern in the nucleus. A subset of these Topors' nuclear speckles were closely associated with the PML nuclear bodies (POD, ND10). A central domain comprising Topors residues 437 to 574 was sufficient for both sumolation and localization to nuclear speckles. One SUMO-1 acceptor site at lysine residue 560 could be identified within this region. However, sumolation-deficient Topors mutants showed that sumolation obviously is not required for localization to nuclear speckles.  相似文献   

12.
DNA glycosylases initiate base excision repair (BER) through the generation of potentially harmful abasic sites (AP sites) in DNA. Human thymine-DNA glycosylase (TDG) is a mismatch-specific uracil/thymine-DNA glycosylase with an implicated function in the restoration of G*C base pairs at sites of cytosine or 5-methylcytosine deamination. The rate-limiting step in the action of TDG in vitro is its dissociation from the product AP site, suggesting the existence of a specific enzyme release mechanism in vivo. We show here that TDG interacts with and is covalently modified by the ubiquitin-like proteins SUMO-1 and SUMO-2/3. SUMO conjugation dramatically reduces the DNA substrate and AP site binding affinity of TDG, and this is associated with a significant increase in enzymatic turnover in reactions with a G*U substrate and the loss of G*T processing activity. Sumoylation also potentiates the stimulatory effect of APE1 on TDG. These observations implicate a function of sumoylation in the controlled dissociation of TDG from the AP site and open up novel perspectives for the understanding of the molecular mechanisms coordinating the early steps of BER.  相似文献   

13.
Post-translational modification by the conjugation of small ubiquitin-like modifiers is an essential mechanism to affect protein function. Currently, only a limited number of substrates are known for most of these modifiers, thus limiting our knowledge of their role and relevance for cellular physiology. Here, we report the development of a universal strategy for proteomic studies of ubiquitin-like modifiers. This strategy involves the development of stable transfected cell lines expressing a double-tagged modifier under the control of a tightly negatively regulated promoter, the induction of the expression and conjugation of the tagged modifier to cellular proteins, the tandem affinity purification of the pool of proteins covalently modified by the tagged modifier, and the identification of the modified proteins by LC and MS. By applying this methodology to the proteomic analysis of SUMO-1 and SUMO-3, we determined that SUMO-1 and SUMO-3 are stable proteins exhibiting half-lives of over 20 h, demonstrated that sumoylation with both SUMO-1 and SUMO-3 is greatly stimulated by MG-132 and heat shock treatment, demonstrated the preferential usage of either SUMO-1 or SUMO-3 for some known SUMO substrates, and identified 122 putative SUMO substrates of which only 27 appeared to be modified by both SUMO-1 and SUMO-3. This limited overlapping in the subset of proteins modified by SUMO-1 and SUMO-3 supports that the SUMO paralogues are likely to be functionally distinct. Three of the novel putative SUMO substrates identified, namely the polypyrimidine tract-binding protein-associated splicing factor PSF, the structural microtubular component alpha-tubulin, and the GTP-binding nuclear protein Ran, were confirmed as authentic SUMO substrates. The application of this universal strategy to the identification of the pool of cellular substrates modified by other ubiquitin-like modifiers will dramatically increase our knowledge of the biological role of the different ubiquitin-like conjugations systems in the cell.  相似文献   

14.
小泛素相关修饰物SUMO研究进展   总被引:8,自引:0,他引:8  
蛋白质翻译后修饰对改变蛋白功能、活性或定位都起着非常重要的作用,泛素及其相似蛋白的修饰是其中一种重要形式。与其他诸如磷酸化、乙酰化、糖基化等不同的是,泛素及其相似蛋白的修饰基团本身即是一个小的多肽,通过异肽键与靶蛋白Lys侧链ε-NH2相连,其中小泛素相关修饰物(small ubiquitin—related modifier,SUMO)与蛋白的共价连接是一种新的广泛存在的翻译后修饰形式。SUMO是广泛存在于真核生物中高度保守的蛋白家族,在脊椎动物中有三个SUMO基因,称为SUMO-1,-2,-3,与泛素在二级结构上极其相似,且催化修饰过程的酶体系也具有很高的同源性。然而,与泛素化介导的蛋白酶降解途径不同,SUMO化修饰发挥着更为广泛的功能,如核质转运、细胞周期调控、信号转导、转录活性调控等。  相似文献   

15.
SUMOs are small ubiquitin-related polypeptides that are reversibly conjugated to many nuclear proteins. Although the number of identified substrates has grown rapidly, relatively little is still understood about when, where, and why most proteins are modified by SUMO. Here, we demonstrate that enzymes involved in the SUMO modification and demodification of proteins are components of the nuclear pore complex (NPC). We show that SENP2, a SUMO protease that is able to demodify both SUMO-1 and SUMO-2 or SUMO-3 protein conjugates, localizes to the nucleoplasmic face of the NPC. The unique amino-terminal domain of SENP2 interacts with the FG repeat domain of Nup153, indicating that SENP2 associates with the nucleoplasmic basket of the NPC. We also investigated the localization of the SUMO conjugating enzyme, Ubc9. Using immunogold labeling of isolated nuclear envelopes, we found that Ubc9 localizes to both the cytoplasmic and the nucleoplasmic filaments of the NPC. In vitro binding studies revealed that Ubc9 and SUMO-1-modified RanGAP1 bind synergistically to form a trimeric complex with a component of the cytoplasmic filaments of the NPC, Nup358. Our results indicate that both SUMO modification and demodification of proteins may occur at the NPC and suggest a connection between the SUMO modification pathway and nucleocytoplasmic transport.  相似文献   

16.
SUMO-1 is an ubiquitin-related protein that is covalently conjugated to a diverse assortment of proteins. The consequences of SUMO-1 modification include the regulation of protein-protein interactions, protein-DNA interactions, and protein subcellular localization. At present, very little is understood about the specific mechanisms that govern the recognition of proteins as substrates for SUMO-1 modification. However, many of the proteins that are modified by SUMO-1 interact directly with the SUMO-1 conjugating enzyme, Ubc9. These interactions suggest that Ubc9 binding may play an important role in substrate recognition as well as in substrate modification. The SUMO-1 consensus sequence (SUMO-1-CS) is a motif of conserved residues surrounding the modified lysine residue of most SUMO-1 substrates. This motif conforms to the sequence "PsiKXE," where Psi is a large hydrophobic residue, K is the lysine to which SUMO-1 is conjugated, X is any amino acid, and E is glutamic acid. In this study, we demonstrate that the SUMO-1-CS is a major determinant of Ubc9 binding and SUMO-1 modification. Mutating residues in the SUMO-1-CS abolishes both Ubc9 binding and substrate modification. These findings have important implications for how SUMO-1 substrates are recognized and for how SUMO-1 is ultimately transferred to specific lysine residues on these substrates.  相似文献   

17.
The human cytomegalovirus (HCMV) major immediate-early protein IE2 is a nuclear phosphoprotein that is believed to be a key regulator in both lytic and latent infections. Using yeast two-hybrid screening, small ubiquitin-like modifiers (SUMO-1, SUMO-2, and SUMO-3) and a SUMO-conjugating enzyme (Ubc9) were isolated as IE2-interacting proteins. In vitro binding assays with glutathione S-transferase (GST) fusion proteins provided evidence for direct protein-protein interaction. Mapping data showed that the C-terminal end of SUMO-1 is critical for interaction with IE2 in both yeast and in vitro binding assays. IE2 was efficiently modified by SUMO-1 or SUMO-2 in cotransfected cells and in cells infected with a recombinant adenovirus expressing HCMV IE2, although the level of modification was much lower in HCMV-infected cells. Two lysine residues at positions 175 and 180 were mapped as major alternative SUMO-1 conjugation sites in both cotransfected cells and an in vitro sumoylation assay and could be conjugated by SUMO-1 simultaneously. Although mutations of these lysine residues did not interfere with the POD (or ND10) targeting of IE2, overexpression of SUMO-1 enhanced IE2-mediated transactivation in a promoter-dependent manner in reporter assays. Interestingly, many other cellular proteins identified as IE2 interaction partners in yeast two-hybrid assays also interact with SUMO-1, suggesting that either directly bound or covalently conjugated SUMO moieties may act as a bridge for interactions between IE2 and other SUMO-1-modified or SUMO-1-interacting proteins. When we investigated the intracellular localization of SUMO-1 in HCMV-infected cells, the pattern changed from nuclear punctate to predominantly nuclear diffuse in an IE1-dependent manner at very early times after infection, but with some SUMO-1 protein now associated with IE2 punctate domains. However, at late times after infection, SUMO-1 was predominantly detected within viral DNA replication compartments containing IE2. Taken together, these results show that HCMV infection causes the redistribution of SUMO-1 and that IE2 both physically binds to and is covalently modified by SUMO moieties, suggesting possible modulation of both the function of SUMO-1 and protein-protein interactions of IE2 during HCMV infection.  相似文献   

18.
Ubiquitin-related modifier SUMO1 and nucleocytoplasmic transport   总被引:4,自引:0,他引:4  
S mall u biquitin related mo difier SUMO-1 and its homologs can be conjugated to a large number of cellular proteins. This involves an enzymatic cascade that resembles ubiquitination, and the modification can be reverted by isopeptidases. SUMOylation does not lead to degradation but instead appears to regulate protein/protein interactions, intracellular localization and protects some modified targets from ubiquitin-dependent degradation. Data collected for more than 30 different target proteins point to two cellular processes, nucleocytoplasmic transport and intranuclear targeting, in which SUMO plays an active role. Here we will focus on links between SUMO and nuclear transport.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号