首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To examine the structural basis of the intrinsic fluorescence changes that occur during the MgATPase cycle of myosin, we generated three mutants of smooth muscle myosin motor domain essential light chain (MDE) containing a single conserved tryptophan residue located at Trp-441 (W441-MDE), Trp-512 (W512-MDE), or Trp-597 (W597-MDE). Although W441- and W597-MDE were insensitive to nucleotide binding, the fluorescence intensity of W512-MDE increased in the presence of MgADP-berellium fluoride (BeF(X)) (31%), MgADP-AlF(4)(-) (31%), MgATP (36%), and MgADP (30%) compared with the nucleotide-free environment (rigor), which was similar to the results of wild type-MDE. Thus, Trp-512 may be the sole ATP-sensitive tryptophan residue in myosin. In addition, acrylamide quenching indicated that Trp-512 was more protected from solvent in the presence of MgATP or MgADP-AlF(4)(-) than in the presence of MgADP-BeF(X), MgADP, or in rigor. Furthermore, the degree of energy transfer from Trp-512 to 2'(3')-O-(N-methylanthraniloyl)-labeled nucleotides was greater in the presence of MgADP-BeF(X), MgATP, or MgADP-AlF(4)(-) than MgADP. We conclude that the conformation of the rigid relay loop containing Trp-512 is altered upon MgATP hydrolysis and during the transition from weak to strong actin binding, establishing a communication pathway from the active site to the actin-binding and converter/lever arm regions of myosin during muscle contraction.  相似文献   

2.
The intrinsic fluorescence of smooth muscle myosin signals conformational changes associated with different catalytic states of the ATPase cycle. To elucidate this relationship, we have examined the pre-steady-state kinetics of nucleotide binding, hydrolysis, and product release in motor domain-essential light chain mutants containing a single endogenous tryptophan, either residue 512 in the rigid relay loop or residue 29 adjacent to the SH3 domain. The intrinsic fluorescence of W512 is sensitive to both nucleotide binding and hydrolysis, and appears to report structural changes at the active site, presumably through a direct connection with switch II. The intrinsic fluorescence of W29 is sensitive to nucleotide binding but not hydrolysis, and does not appear to be tightly linked with structural changes occurring at the active site. We propose that the SH3 domain may be sensitive to conformational changes in the lever arm through contacts with the essential light chain.  相似文献   

3.
C M Yengo  L Chrin  A S Rovner  C L Berger 《Biochemistry》1999,38(44):14515-14523
The helix-loop-helix (A-site) and myopathy loop (R-site) are located on opposite sides of the cleft that separates the proposed actin-binding interface of myosin. To investigate the structural features of the A- and R-sites, we engineered two mutants of the smooth muscle myosin motor domain with the essential light chain (MDE), containing a single tryptophan located either in the A-site (W546-MDE) or in the R-site (V413W MDE). W546- and V413W-MDE display actin-activated ATPase and actin-binding properties similar to those of wild-type MDE. The steady-state fluorescence properties of W546-MDE [emission peak (lambda(max)) = 344, quantum yield = 0.20, and acrylamide bimolecular quenching constant (k(q)) = 6.4 M(-)(1). ns(-)(1)] and V413W-MDE [lambda(max) = 338, quantum yield = 0.27, and k(q) = 3.6 M(-)(1).ns(-)(1)] demonstrate that Trp-546 and Trp-413 are nearly fully exposed to solvent, in agreement with the crystallographic data on these residues. In the presence of actin, Trp-546 shifts to a more buried environment in both the ADP-bound and nucleotide-free (rigor) actomyosin complexes, as indicated by an average lambda(max) of 337 or 336 nm, respectively, and protection from dimethyl(2-hydroxy-5-nitrobenzyl)sulfonium bromide (DHNBS) oxidation. In contrast, Trp-413 has a single conformation with an average lambda(max) of 338 nm in the ADP-bound complex, but in the rigor complex it is 50% more accessible to DHNBS oxidation and can adopt a range of possible conformations (lambda(max) = 341-347 nm). Our results suggest a structural model in which the A-site remains tightly bound to actin and the R-site adopts a more flexible and solvent-exposed conformation upon ADP release.  相似文献   

4.
The putative actin-binding interface of myosin is separated by a large cleft that extends into the base of the nucleotide binding pocket, suggesting that it may be important for mediating the nucleotide-dependent changes in the affinity for myosin on actin. We have genetically engineered a truncated version of smooth muscle myosin containing the motor domain and the essential light chain-binding region (MDE), with a single tryptophan residue at position 425 (F425W-MDE) in the actin-binding cleft. Steady-state fluorescence of F425W-MDE demonstrates that Trp-425 is in a more solvent-exposed conformation in the presence of MgATP than in the presence of MgADP or absence of nucleotide, consistent with closure of the actin-binding cleft in the strongly bound states of MgATPase cycle for myosin. Transient kinetic experiments demonstrate a direct correlation between the rates of strong actin binding and the conformation of Trp-425 in the actin-binding cleft, and suggest the existence of a novel conformation of myosin not previously seen in solution or by x-ray crystallography. Thus, these results directly demonstrate that: 1) the conformation of the actin-binding cleft mediates the affinity of myosin for actin in a nucleotide-dependent manner, and 2) actin induces conformational changes in myosin required to generate force and motion during muscle contraction.  相似文献   

5.
Dictyostelium myosin II motor domain constructs containing a single tryptophan residue near the active sites were prepared in order to characterize the process of nucleotide binding. Tryptophan was introduced at positions 113 and 131, which correspond to those naturally present in vertebrate skeletal muscle myosin, as well as position 129 that is also close to the adenine binding site. Nucleotide (ATP and ADP) binding was accompanied by a large quench in protein fluorescence in the case of the tryptophans at 129 and 131 but a small enhancement for that at 113. None of these residues was sensitive to the subsequent open-closed transition that is coupled to hydrolysis (i.e. ADP and ATP induced similar fluorescence changes). The kinetics of the fluorescence change with the F129W mutant revealed at least a three-step nucleotide binding mechanism, together with formation of a weakly competitive off-line intermediate that may represent a nonproductive mode of nucleotide binding. Overall, we conclude that the local and global conformational changes in myosin IIs induced by nucleotide binding are similar in myosins from different species, but the sign and magnitude of the tryptophan fluorescence changes reflect nonconserved residues in the immediate vicinity of each tryptophan. The nucleotide binding process is at least three-step, involving conformational changes that are quite distinct from the open-closed transition sensed by the tryptophan Trp(501) in the relay loop.  相似文献   

6.
The fluorescence properties of Dictyostelium discoideum (Dd) myosin II constructs containing a single tryptophan residue have revealed detailed information regarding nucleotide binding and hydrolysis steps. Here we extend these studies to investigate the influence of actin on nucleotide-induced fluorescence transients. The fluorescence from native actin tryptophan residues is not significantly perturbed on binding to myosin, although an apparent signal is detected as a consequence of a light scatter artifact. Actin has a minor effect on the response of W129, located at the entrance to the nucleotide-binding pocket, and reduces the forward rate constants for the isomerization(s) associated with binding of ATP, ATPgammaS, and ADP by 3-fold or less. The isomerization detected by W129 clearly precedes the dissociation of actin in the case of ADP and ATPgammaS binding. The fluorescence from the conserved W501 residue, located at the distal end of the relay helix, is very sensitive to the switch 2 and/or lever arm disposition. Consequently, the observed fluorescence emission intensity can be used to estimate the equilibrium constant between the pre- and post-power stroke conformations. Actin modulates this equilibrium by no more than 2-fold in the presence of nucleoside triphosphate. These data have implications for the mechanism of product release and suggest that actin activates another process in the mechanism, such as switch 1 movement and Pi release, rather than influencing the switch 2 equilibrium and lever arm position directly.  相似文献   

7.
The motor protein myosin binds actin and ATP, producing work by causing relative translation of the proteins while transducing ATP free energy. Smooth muscle myosin has one of four heavy chains encoded by the MYH11 gene that differ at the C-terminus and in the active site for ATPase due to alternate splicing. A seven-amino-acid active site insert in phasic muscle myosin is absent from the tonic isoform. Fluorescence increase in the nucleotide sensitive tryptophan (NST) accompanies nucleotide binding and hydrolysis in several myosin isoforms implying it results from a common origin within the motor. A wild-type tonic myosin (smA) construct of the enzymatic head domain (subfragment 1 or S1) has seven tryptophan residues and nucleotide-induced fluorescence enhancement like other myosins. Three smA mutants probe the molecular basis for the fluorescence enhancement. W506+ contains one tryptophan at position 506 homologous to the NST in other myosins. W506F has the native tryptophans except phenylalanine replaces W506, and W506+(Y499F) is W506+ with phenylalanine replacing Y499. W506+ lacks nucleotide-induced fluorescence enhancement probably eliminating W506 as the NST. W506F has impaired ATPase activity but retains nucleotide-induced fluorescence enhancement. Y499F replacement in W506+ partially rescues nucleotide sensitivity demonstrating the role of Y499 as an NST facilitator. The exceptional response of W506 to active site conformation opens the possibility that phasic and tonic isoforms differ in how influences from active site ATPase propagate through the protein network.  相似文献   

8.
We used spin-labeled nucleotide analogs and fluorescence spectroscopy to monitor conformational changes at the nucleotide-binding site of wild-type Dictyostelium discoideum (WT) myosin and a construct containing a single tryptophan at position F239 near the switch 1 loop. Electron paramagnetic resonance (EPR) spectroscopy and tryptophan fluorescence have been used previously to investigate changes at the myosin nucleotide site. A limitation of fluorescence spectroscopy is that it must be done on mutated myosins containing only a single tryptophan. A limitation of EPR spectroscopy is that one infers protein conformational changes from alterations in the mobility of an attached probe. These limitations have led to controversies regarding conclusions reached by the two approaches. For the first time, the data presented here allow direct correlations to be made between the results from the two spectroscopic approaches on the same proteins and extend our previous EPR studies to a nonmuscle myosin. EPR probe mobility indicates that the conformation of the nucleotide pocket of the WT⋅SLADP (spin-labeled ADP) complex is similar to that of skeletal myosin. The pocket is closed in the absence of actin for both diphosphate and triphosphate nucleotide states. In the actin⋅myosin⋅diphosphate state, the pocket is in equilibrium between closed and open conformations, with the open conformation slightly more favorable than that seen for fast skeletal actomyosin. The EPR spectra for the mutant show similar conformations to skeletal myosin, with one exception: in the absence of actin, the nucleotide pocket of the mutant displays an open component that was approximately 4-5 kJ/mol more favorable than in skeletal or WT myosin. These observations resolve the controversies between the two techniques. The data from both techniques confirm that binding of myosin to actin alters the conformation of the myosin nucleotide pocket with similar but not identical energetics in both muscle and nonmuscle myosins.  相似文献   

9.
Remodelling the contractile apparatus within smooth muscle cells allows effective contractile activity over a wide range of cell lengths. Thick filaments may be redistributed via depolymerisation into inactive myosin monomers that have been detected in vitro, in which the long tail has a folded conformation. Using negative stain electron microscopy of individual folded myosin molecules from turkey gizzard smooth muscle, we show that they are more compact than previously described, with heads and the three segments of the folded tail closely packed. Heavy meromyosin (HMM), which lacks two-thirds of the tail, closely resembles the equivalent parts of whole myosin. Image processing reveals a characteristic head region morphology for both HMM and myosin, with features identifiable by comparison with less compact molecules. The two heads associate asymmetrically: the tip of one motor domain touches the base of the other, resembling the blocked and free heads of this HMM when it forms 2D crystals on lipid monolayers. The tail of HMM lies between the heads, contacting the blocked motor domain, unlike in the 2D crystal. The tail of whole myosin is bent sharply and consistently close to residues 1175 and 1535. The first bend position correlates with a skip in the coiled coil sequence, the second does not. Tail segments 2 and 3 associate only with the blocked head, such that the second bend is near the C-lobe of the blocked head regulatory light chain. Quantitative analysis of tail flexibility shows that the single coiled coil of HMM has an apparent Young's modulus of about 0.5 GPa. The folded tail of the whole myosin is less flexible, indicating interactions between the segments. The folded tail does not modify the compact head arrangement but stabilises it, indicating a structural mechanism for the very low ATPase activity of the folded molecule.  相似文献   

10.
Halohydrin dehalogenase (HheC) from Agrobacterium radiobacter AD1 is a homotetrameric protein containing four tryptophan residues per subunit. The fluorescence properties of the enzyme are strongly influenced by halide binding. To examine the role of the tryptophans (W139, W192, W238, and W249) in halide binding and catalysis, they were individually mutated to a phenylalanine. All mutations, except for W238F, influenced the enzymatic properties. Mutating W192 to phenylalanine inactivated the enzyme and led to dissociation into dimers and monomers. In the structure of HheC, residue W139 and residue W249 from the opposite subunit are close to the active site of the enzyme. Substitution of W139 mainly affected K(m) values with all tested substrates and reduced the enantiopreference for p-nitro-2-bromo-1-phenylethanol. Replacing W249 increased both k(cat) and K(m) values with all tested substrates except for the (S)-enantiomer of p-nitro-2-bromo-1-phenylethanol, for which k(cat) was 3-fold decreased, resulting in a 6-fold increase of the enantioselectivity. Fluorescence measurements revealed that in the ligand-free state the intrinsic protein fluorescence of mutant W139F is higher than that of the wild-type enzyme, while the fluorescence intensity of mutants W238F and W249F was lower. The fluorescence intensities of the W238F and W249F enzymes were increased when they were unfolded or when bromide was added, whereas the fluorescence of mutant W139F was not increased by unfolding or addition of bromide. These results demonstrate that the fluorescence of residues W238 and W249 is partially quenched in the folded ligand-free state, and that W139 is completely quenched and acts as an energy acceptor for the other tryptophan residues as well. Changes of the maximum fluorescence emission wavelength of the HheC variants and the results of acrylamide quenching experiments confirmed that bromide binding induces a local conformational change around the active site, resulting in residue W139 and the quencher group being separated.  相似文献   

11.
The human MTH1 antimutator protein hydrolyzes mutagenic oxidized nucleotides, and thus prevents their incorporation into DNA and any subsequent mutation. We have examined its great selectivity for oxidized nucleotides by analyzing the structure of the protein and its interaction with nucleotides, as reflected in the fluorescence of its tryptophan residues. The binding of nucleotides decreased the intensity of MTH1 protein fluorescence and red-shifted the emission peak, indicating that at least one tryptophan residue is close to the binding site. Oxidized nucleotides (2-OH-dATP and 8-oxo-dGTP) produced a larger decrease in fluorescence intensity than did unoxidized nucleotides, and MTH1 protein had a much higher binding affinity for oxidized nucleotides. Deconvolution of protein fluorescence by comparison of its quenching by positively (Cs(+)) and negatively (I(-)) charged ions indicated that the MTH1 tryptophan residues are in two different environments. One class of tryptophan residues is exposed to solvent but in a negatively charged environment; the other class is partially buried. While the binding of unoxidized nucleotides quenches the fluorescence of only class 1 tryptophan residue(s), the binding of oxidized nucleotides quenched that of class 2 tryptophan residue(s) as well. This suggests that selectivity is due to additional contact between the protein and the oxidized nucleotide. Mutation analysis indicated that the tryptophan residue at position 117, which is in a negative environment, is in contact with nucleotides. The negatively charged residues in the binding site probably correlate with the finding that nucleotide binding requires metal ions and depends upon their nature. Positively charged metal ions probably act by neutralizing the negatively charged nucleotide phosphate groups. (c) 2002 Elsevier Science Ltd.  相似文献   

12.
Park S  Burghardt TP 《Biochemistry》2002,41(5):1436-1444
Myosin is the molecular motor in muscle that generates torque and transiently reacts with actin. The mechanical work performed by the motor occurs by successive decrements in the free energy of the myosin-nucleotide system. The seat of these transitions is the globular "head" domain of the myosin molecule (subfragment 1 or S1). A very useful (hitherto empirical) signal of these transitions has been optical, namely, detection of state-dependent changes in absorbance or fluorescence of S1. This effect has now been found to arise in a particular myosin residue (Trp510 in rabbit skeletal muscle), enabling the study of its intimate mechanism. In this work, based on measuring time-dependent signals, we find that the signal change upon nucleotide binding is adequately explained by assuming that nucleotide binding to a remote site causes a transition from a situation in which Trp510 is strongly statically quenched to a situation in which it is weakly statically quenched. The Trp510-static quencher interaction is also responsible, in part, for the changing tryptophan optical density in S1 upon nucleotide binding. Using crystallographically based geometry, calculation of the Trp510 electronic wave function indicates that Tyr503 is the static quencher.  相似文献   

13.
When myosin interacts with ATP there is a characteristic enhancement in tryptophan fluorescence which has been widely exploited in kinetic studies. Using Dictyostelium motor domain mutants, we show that W501, located at the end of the relay helix close to the converter region, responds to two independent conformational events on nucleotide binding. First, a rapid isomerization gives a small fluorescence quench and then a slower reversible step which controls the hydrolysis rate (and corresponds to the open-closed transition identified by crystallography) gives a large enhancement. A mutant lacking W501 shows no ATP-induced enhancement in the fluorescence, yet quenched-flow measurements demonstrate that ATP is rapidly hydrolyzed to give a products complex as in the wild-type. The nucleotide-free, open and closed states of a single tryptophan-containing construct, W501+, show distinct fluorescence spectra and susceptibilities to acrylamide quenching which indicate that W501 becomes internalized in the closed state. The open-closed transition does not require hydrolysis per se and can be induced by a nonhydrolyzable analogue. At 20 degrees C, the equilibrium may favor the open state, but with ATP as substrate, the subsequent hydrolysis step pulls the equilibrium toward the closed state such that a tryptophan mutant containing only W501 yields an overall 80% enhancement. These studies allow solution-based assays to be rationalized with the crystal structures of the myosin motor domain and show that three different states can be distinguished at the interface of the relay and converter regions.  相似文献   

14.
The nucleotide binding subunit of the phosphate-specific transporter (PstB) from Mycobacterium tuberculosis is a member of the ABC family of permeases, which provides energy for transport through ATP hydrolysis. We utilized the intrinsic fluorescence of the single tryptophan containing protein to study the structural and conformational changes that occur upon nucleotide binding. ATP binding appeared to lead to a conformation in which the tryptophan residue had a higher degree of solvent exposure and fluorescence quenching. Substantial alteration in the proteolysis profile of PstB owing to nucleotide binding was used to decipher conformational change in the protein. In limited proteolysis experiments, we found that ATP or its nonhydrolyzable analog provided significant protection of the native protein, indicating that the effect of nucleotide on PstB conformation is directly associated with nucleotide binding. Taken together, these results indicate that nucleotide binding to PstB is accompanied by a global conformational change of the protein, which involves the helical domain from Arg137 to Trp150. Results reported here provide evidence that the putative movement of the alpha-helical sub-domain relative to the core sub-domain, until now only inferred from X-ray structures and modeling, is indeed a physiological phenomenon and is nucleotide dependent.  相似文献   

15.
W C Lam  D H Tsao  A H Maki  K A Maegley  N O Reich 《Biochemistry》1992,31(43):10438-10442
The interactions of an arsenic (III) reagent, (CH3)2AsSCH2CONH2, with two Escherichia coli RI methyltransferase mutants, W183F and C223S, have been studied by phosphorescence, optically detected magnetic resonance, and fluorescence spectroscopy. The phosphorescence spectrum of the W183F mutant containing only one tryptophan at position 225 reveals a single 0,0-band that is red-shifted by 9.8 nm upon binding of As(III). Fluorescence titration of W183F with (CH3)2AsSCH2CONH2 produces a large tryptophan fluorescence quenching. Analysis of the quenching data points to a single high-affinity As(III) binding site that is associated with the fluorescence quenching. Triplet-state kinetic measurements performed on the perturbed tryptophan show large reductions in the lifetimes of the triplet sublevels, especially that of the T chi sublevel. As(III) binding to the enzyme at a site very close to the Trp225 residue induces an external heavy-atom effect, showing that the perturber atom is in van der Waals contact with the indole chromophore. In the case of the C223S mutant, a single tryptophan 0,0-band also is observed in the phosphorescence spectrum, but no change occurs upon addition of the As(III) reagent. Fluorescence titration of C223S with As(III) shows essentially no quenching of tryptophan fluorescence, in contrast with W183F. These results, along with previous triplet-state and biochemical studies on the wild-type enzyme [Tsao, D. H.H., & Maki, A. H. (1991) Biochemistry 30, 4565-4572], show that As(III) binds with high affinity to the Cys223 residue and that the Trp225 side chain is located close enough to that of Cys223 to produce a heavy-atom perturbation when As(III) is bound.  相似文献   

16.
Liver fatty acid-binding protein (FABP) binds a variety of non-polar anionic ligands including fatty acids, fatty acyl CoAs, and bile acids. Previously we prepared charge reversal mutants and demonstrated the importance of lysine residues within the portal region in ligand and membrane binding. We have now prepared several tryptophan-containing mutants within the portal region, and one tryptophan at position 28 (L28W) has proved remarkably effective as an intrinsic probe to further study ligand binding. The fluorescence of the L28W mutant was very sensitive to fatty acid and bile acid binding where a large (up to 4-fold) fluorescence enhancement was obtained. In contrast, the binding of oleoyl CoA reduced tryptophan fluorescence. Positive cooperativity for fatty acid binding was observed while detailed information on the orientation of binding of bile acid derivatives was obtained. The ability of bound oleoyl CoA to reduce the fluorescence of L28W provided an opportunity to demonstrate that fatty acyl CoAs can compete with fatty acids for binding to liver FABP under physiological conditions, further highlighting the role of fatty acyl CoAs in modulating FABP function in the cell.  相似文献   

17.
The MA protein from HIV-1 is a small, multifunctional protein responsible for regulating various stages of the viral replication cycle. To achieve its diverse tasks, MA interacts with host cell proteins and it has been reported that one of these is the ubiquitous calcium-sensing calmodulin (CaM), which is up-regulated upon HIV-1 infection. The nature of the CaM-MA interaction has been the subject of structural studies, using peptides based on the MA sequence, that have led to conflicting conclusions. The results presented here show that CaM binds intact MA with 1:1 stoichiometry in a Ca2+-dependent manner and that the complex adopts a highly extended conformation in solution as revealed by small-angle X-ray scattering. Alterations in tryptophan fluorescence suggest that the two buried tryptophans (W16 and W36) located in the first two alpha-helices of MA mediate the CaM interaction. Major chemical shift changes occur in the NMR spectrum of MA upon complex formation, whereas chemical shift changes in the CaM spectrum are quite modest and are assigned to residues within the normal target protein-binding hydrophobic clefts of CaM. The NMR data indicate that CaM binds MA via its N- and C-terminal lobes and induces a dramatic conformational change involving a significant loss of secondary and tertiary structure within MA. Circular dichroism experiments suggest that MA loses ∼ 20% of its α-helical content upon CaM binding. Thus, CaM binding is expected to impact upon the accessibility of interaction sites within MA that are involved in its various functions.  相似文献   

18.
 应用凝胶电泳覆盖技术和放射自显影法研究了32~P-标记的平滑肌肌球蛋白调节轻链在肌球蛋白分子上的定位。实验结果表明调节轻链(LC_(20))可重新结合于平滑肌肌球蛋白重链(200kD),重酶解肌球蛋白(130kD)及其62kD和26kD肽段上。这提示调节轻链的结合点位于平滑肌肌球蛋白亚段-1羧基端的26kD肽段上。  相似文献   

19.
Structural rearrangements of the myosin upper-50 kD subdomain are thought to play a key role in coordinating actin binding with nucleotide hydrolysis during the myosin ATPase cycle. Such rearrangements could open and close the active site in opposition to the actin-binding cleft, helping explain the opposing affinities of myosin for actin and nucleotide. To directly examine conformational changes across the active site during the ATPase cycle we have genetically engineered a mutant of chicken smooth-muscle myosin, F344W motor domain essential light chain, which contains a single tryptophan (344W) located on a short loop between two alpha helixes that traverse the upper-50 kD subdomain in front of the active site. Fluorescence resonance energy transfer was examined between the 344W donor probe and 2'(3')-O-(N-methylanthraniloyl) (mant)-nucleotide acceptor probes in the active site of this construct. The observed fluorescence resonance energy transfer efficiencies were 6.4% in the presence of mant ADP and 23.8% in the presence of mant ATP, corresponding to distances of 33.4 A and 24.9 A, respectively. Our results are consistent with structural rearrangements in which there is an 8.5-A closure between the 344W residue and the mant moiety during the transition from the strongly (ADP) to weakly (ATP) actin-bound states of the myosin ATPase cycle.  相似文献   

20.
In this study we have addressed the ability of the glycolipid transfer protein (GLTP) to transfer anthrylvinyl-galactosylceramide at different pH and sodium chloride concentrations, and the ability of three different mutants to transfer the fluorescently labeled galactosylceramide between donor and acceptor model membranes. We constructed single tryptophan mutants with site-directed mutagenesis where two of the three tryptophan (W) of wild-type human GLTP were substituted with phenylalanine (F) and named W85 GLTP (W96F and W142F), W96 GLTP (W85F and W142F) and W142 GLTP (W85F and W96F) accordingly. Wild-type GLTP and W96 GLTP were both able to transfer anthrylvinyl-galactosylceramide, but the two variants W85 GLTP and W142 GLTP did not show any glycolipid transfer activity, indicating that the tryptophan in position 96 is crucial for transfer activity. Tryptophan fluorescence emission showed a blue shift of the maximal emission wavelength upon interaction of glycolipid containing vesicle with wild-type GLTP and W96 GLTP, while no blue shift was recorded for the protein variants W85 GLTP and W142 GLTP. The quantum yield of tryptophan emission was highest for the W96 GLTP protein whereas W85 GLTP, W142 GLTP and wild-type GLTP showed a lower and almost similar quantum yield. The lifetime and anisotropy decay of the different tryptophan mutants also changed upon binding to vesicles containing galactosylceramide. Again wild-type GLTP and W96 GLTP showed similar behavior in the presence of vesicles containing glycolipids. Taken together, our data show that the W96 is involved not only in the activity of the protein but also in the interaction between the protein and glycolipid containing membranes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号