首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Computational gene regulation models provide a means for scientists to draw biological inferences from time-course gene expression data. Based on the state-space approach, we developed a new modeling tool for inferring gene regulatory networks, called time-delayed Gene Regulatory Networks (tdGRNs). tdGRN takes time-delayed regulatory relationships into consideration when developing the model. In addition, a priori biological knowledge from genome-wide location analysis is incorporated into the structure of the gene regulatory network. tdGRN is evaluated on both an artificial dataset and a published gene expression data set. It not only determines regulatory relationships that are known to exist but also uncovers potential new ones. The results indicate that the proposed tool is effective in inferring gene regulatory relationships with time delay. tdGRN is complementary to existing methods for inferring gene regulatory networks. The novel part of the proposed tool is that it is able to infer time-delayed regulatory relationships.  相似文献   

2.
3.
ABSTRACT: BACKGROUND: Dynamic Bayesian network (DBN) is among the mainstream approaches for modeling various biological networks, including the gene regulatory network (GRN). Most current methods for learning DBN employ either local search such as hill-climbing, or a meta stochastic global optimization framework such as genetic algorithm or simulated annealing, which are only able to locate sub-optimal solutions. Further, current DBN applications have essentially been limited to small sized networks. RESULTS: To overcome the above difficulties, we introduce here a deterministic global optimization based DBN approach for reverse engineering genetic networks from time course gene expression data. For such DBN models that consist only of inter time slice arcs, we show that there exists a polynomial time algorithm for learning the globally optimal network structure. The proposed approach, named GlobalMIT+, employs the recently proposed information theoretic scoring metric named mutual information test (MIT). GlobalMIT+ is able to learn high-order time delayed genetic interactions, which are common to most biological systems. Evaluation of the approach using both synthetic and real data sets, including a 733 cyanobacterial gene expression data set, shows significantly improved performance over other techniques. CONCLUSIONS: Our studies demonstrate that deterministic global optimization approaches can infer large scale genetic networks.  相似文献   

4.
Xiong M  Li J  Fang X 《Genetics》2004,166(2):1037-1052
In this report, we propose the use of structural equations as a tool for identifying and modeling genetic networks and genetic algorithms for searching the most likely genetic networks that best fit the data. After genetic networks are identified, it is fundamental to identify those networks influencing cell phenotypes. To accomplish this task we extend the concept of differential expression of the genes, widely used in gene expression data analysis, to genetic networks. We propose a definition for the differential expression of a genetic network and use the generalized T2 statistic to measure the ability of genetic networks to distinguish different phenotypes. However, describing the differential expression of genetic networks is not enough for understanding biological systems because differences in the expression of genetic networks do not directly reflect regulatory strength between gene activities. Therefore, in this report we also introduce the concept of differentially regulated genetic networks, which has the potential to assess changes of gene regulation in response to perturbation in the environment and may provide new insights into the mechanism of diseases and biological processes. We propose five novel statistics to measure the differences in regulation of genetic networks. To illustrate the concepts and methods for reconstruction of genetic networks and identification of association of genetic networks with function, we applied the proposed models and algorithms to three data sets.  相似文献   

5.
6.
7.
Recent advances in high-throughput DNA microarrays and chromatin immunoprecipitation (ChIP) assays have enabled the learning of the structure and functionality of genetic regulatory networks. In light of these heterogeneous data sets, this paper proposes a novel approach for reconstruction of genetic regulatory networks based on the posterior probabilities of gene regulations. Built within the framework of Bayesian statistics and computational Monte Carlo techniques, the proposed approach prevents the dichotomy of classifying gene interactions as either being connected or disconnected, thereby it reduces significantly the inference errors. Simulation results corroborate the superior performance of the proposed approach relative to the existing state-of-the-art algorithms. A genetic regulatory network for Saccharomyces cerevisiae is inferred based on the published real data sets, and biological meaningful results are discussed.  相似文献   

8.
Inferring qualitative relations in genetic networks and metabolic pathways   总被引:8,自引:0,他引:8  
MOTIVATION: Inferring genetic network architecture from time series data of gene expression patterns is an important topic in bioinformatics. Although inference algorithms based on the Boolean network were proposed, the Boolean network was not sufficient as a model of a genetic network. RESULTS: First, a Boolean network model with noise is proposed, together with an inference algorithm for it. Next, a qualitative network model is proposed, in which regulation rules are represented as qualitative rules and embedded in the network structure. Algorithms are also presented for inferring qualitative relations from time series data. Then, an algorithm for inferring S-systems (synergistic and saturable systems) from time series data is presented, where S-systems are based on a particular kind of nonlinear differential equation and have been applied to the analysis of various biological systems. Theoretical results are shown for Boolean networks with noises and simple qualitative networks. Computational results are shown for Boolean networks with noises and S-systems, where real data are not used because the proposed models are still conceptual and the quantity and quality of currently available data are not enough for the application of the proposed methods.  相似文献   

9.
Reconstruction of gene regulatory networks (GRNs) is of utmost interest and has become a challenge computational problem in system biology. However, every existing inference algorithm from gene expression profiles has its own advantages and disadvantages. In particular, the effectiveness and efficiency of every previous algorithm is not high enough. In this work, we proposed a novel inference algorithm from gene expression data based on differential equation model. In this algorithm, two methods were included for inferring GRNs. Before reconstructing GRNs, singular value decomposition method was used to decompose gene expression data, determine the algorithm solution space, and get all candidate solutions of GRNs. In these generated family of candidate solutions, gravitation field algorithm was modified to infer GRNs, used to optimize the criteria of differential equation model, and search the best network structure result. The proposed algorithm is validated on both the simulated scale-free network and real benchmark gene regulatory network in networks database. Both the Bayesian method and the traditional differential equation model were also used to infer GRNs, and the results were used to compare with the proposed algorithm in our work. And genetic algorithm and simulated annealing were also used to evaluate gravitation field algorithm. The cross-validation results confirmed the effectiveness of our algorithm, which outperforms significantly other previous algorithms.  相似文献   

10.
The manipulation of organisms using combinations of gene knockout, RNAi and drug interaction experiments can be used to reveal regulatory interactions between genes. Several algorithms have been proposed that try to reconstruct the underlying regulatory networks from gene expression data sets arising from such experiments. Often these approaches assume that each gene has approximately the same number of interactions within the network, and the methods rely on prior knowledge, or the investigator's best guess, of the average network connectivity. Recent evidence points to scale-free properties in biological networks, however, where network connectivity follows a power-law distribution. For scale-free networks, the average number of regulatory interactions per gene does not satisfactorily characterise the network. With this in mind, a new reverse engineering approach is introduced that does not require prior knowledge of network connectivity and its performance is compared with other published algorithms using simulated gene expression data with biologically relevant network structures. Because this new approach does not make any assumptions about the distribution of network connections, it is suitable for application to scale-free networks.  相似文献   

11.
The development of high-throughput genomic technologies associated with recent genetic perturbation techniques such as short hairpin RNA (shRNA), gene trapping, or gene editing (CRISPR/Cas9) has made it possible to obtain large perturbation data sets. These data sets are invaluable sources of information regarding the function of genes, and they offer unique opportunities to reverse engineer gene regulatory networks in specific cell types. Modular response analysis (MRA) is a well-accepted mathematical modeling method that is precisely aimed at such network inference tasks, but its use has been limited to rather small biological systems so far. In this study, we show that MRA can be employed on large systems with almost 1,000 network components. In particular, we show that MRA performance surpasses general-purpose mutual information-based algorithms. Part of these competitive results was obtained by the application of a novel heuristic that pruned MRA-inferred interactions a posteriori. We also exploited a block structure in MRA linear algebra to parallelize large system resolutions.  相似文献   

12.
Mutual information (MI), a quantity describing the nonlinear dependence between two random variables, has been widely used to construct gene regulatory networks (GRNs). Despite its good performance, MI cannot separate the direct regulations from indirect ones among genes. Although the conditional mutual information (CMI) is able to identify the direct regulations, it generally underestimates the regulation strength, i.e. it may result in false negatives when inferring gene regulations. In this work, to overcome the problems, we propose a novel concept, namely conditional mutual inclusive information (CMI2), to describe the regulations between genes. Furthermore, with CMI2, we develop a new approach, namely CMI2NI (CMI2-based network inference), for reverse-engineering GRNs. In CMI2NI, CMI2 is used to quantify the mutual information between two genes given a third one through calculating the Kullback–Leibler divergence between the postulated distributions of including and excluding the edge between the two genes. The benchmark results on the GRNs from DREAM challenge as well as the SOS DNA repair network in Escherichia coli demonstrate the superior performance of CMI2NI. Specifically, even for gene expression data with small sample size, CMI2NI can not only infer the correct topology of the regulation networks but also accurately quantify the regulation strength between genes. As a case study, CMI2NI was also used to reconstruct cancer-specific GRNs using gene expression data from The Cancer Genome Atlas (TCGA). CMI2NI is freely accessible at http://www.comp-sysbio.org/cmi2ni.  相似文献   

13.
Cluster analysis of gene-wide expression data from DNA microarray hybridization studies has proved to be a useful tool for identifying biologically relevant groupings of genes and constructing gene regulatory networks. The motivation for considering mutual information is its capacity to measure a general dependence among gene random variables. We propose a novel clustering strategy based on minimizing mutual information among gene clusters. Simulated annealing is employed to solve the optimization problem. Bootstrap techniques are employed to get more accurate estimates of mutual information when the data sample size is small. Moreover, we propose to combine the mutual information criterion and traditional distance criteria such as the Euclidean distance and the fuzzy membership metric in designing the clustering algorithm. The performances of the new clustering methods are compared with those of some existing methods, using both synthesized data and experimental data. It is seen that the clustering algorithm based on a combined metric of mutual information and fuzzy membership achieves the best performance. The supplemental material is available at www.gspsnap.tamu.edu/gspweb/zxb/glioma_zxb.  相似文献   

14.
15.
MOTIVATION: Bayesian network methods have shown promise in gene regulatory network reconstruction because of their capability of capturing causal relationships between genes and handling data with noises found in biological experiments. The problem of learning network structures, however, is NP hard. Consequently, heuristic methods such as hill climbing are used for structure learning. For networks of a moderate size, hill climbing methods are not computationally efficient. Furthermore, relatively low accuracy of the learned structures may be observed. The purpose of this article is to present a novel structure learning method for gene network discovery. RESULTS: In this paper, we present a novel structure learning method to reconstruct the underlying gene networks from the observational gene expression data. Unlike hill climbing approaches, the proposed method first constructs an undirected network based on mutual information between two nodes and then splits the structure into substructures. The directional orientations for the edges that connect two nodes are then obtained by optimizing a scoring function for each substructure. Our method is evaluated using two benchmark network datasets with known structures. The results show that the proposed method can identify networks that are close to the optimal structures. It outperforms hill climbing methods in terms of both computation time and predicted structure accuracy. We also apply the method to gene expression data measured during the yeast cycle and show the effectiveness of the proposed method for network reconstruction.  相似文献   

16.
Recently a state-space model with time delays for inferring gene regulatory networks was proposed. It was assumed that each regulation between two internal state variables had multiple time delays. This assumption caused underestimation of the model with many current gene expression datasets. In biological reality, one regulatory relationship may have just a single time delay, and not multiple time delays. This study employs Boolean variables to capture the existence of the time-delayed regulatory relationships in gene regulatory networks in terms of the state-space model. As the solution space of time delayed relationships is too large for an exhaustive search, a genetic algorithm (GA) is proposed to determine the optimal Boolean variables (the optimal time-delayed regulatory relationships). Coupled with the proposed GA, Bayesian information criterion (BIC) and probabilistic principle component analysis (PPCA) are employed to infer gene regulatory networks with time delays. Computational experiments are performed on two real gene expression datasets. The results show that the GA is effective at finding time-delayed regulatory relationships. Moreover, the inferred gene regulatory networks with time delays from the datasets improve the prediction accuracy and possess more of the expected properties of a real network, compared to a gene regulatory network without time delays.  相似文献   

17.
18.
An efficient two-step Markov blanket method for modeling and inferring complex regulatory networks from large-scale microarray data sets is presented. The inferred gene regulatory network (GRN) is based on the time series gene expression data capturing the underlying gene interactions. For constructing a highly accurate GRN, the proposed method performs: 1) discovery of a gene's Markov Blanket (MB), 2) formulation of a flexible measure to determine the network's quality, 3) efficient searching with the aid of a guided genetic algorithm, and 4) pruning to obtain a minimal set of correct interactions. Investigations are carried out using both synthetic as well as yeast cell cycle gene expression data sets. The realistic synthetic data sets validate the robustness of the method by varying topology, sample size, time delay, noise, vertex in-degree, and the presence of hidden nodes. It is shown that the proposed approach has excellent inferential capabilities and high accuracy even in the presence of noise. The gene network inferred from yeast cell cycle data is investigated for its biological relevance using well-known interactions, sequence analysis, motif patterns, and GO data. Further, novel interactions are predicted for the unknown genes of the network and their influence on other genes is also discussed.  相似文献   

19.
Structural systems identification of genetic regulatory networks   总被引:2,自引:0,他引:2  
MOTIVATION: Reverse engineering of genetic regulatory networks from experimental data is the first step toward the modeling of genetic networks. Linear state-space models, also known as linear dynamical models, have been applied to model genetic networks from gene expression time series data, but existing works have not taken into account available structural information. Without structural constraints, estimated models may contradict biological knowledge and estimation methods may over-fit. RESULTS: In this report, we extended expectation-maximization (EM) algorithms to incorporate prior network structure and to estimate genetic regulatory networks that can track and predict gene expression profiles. We applied our method to synthetic data and to SOS data and showed that our method significantly outperforms the regular EM without structural constraints. AVAILABILITY: The Matlab code is available upon request and the SOS data can be downloaded from http://www.weizmann.ac.il/mcb/UriAlon/Papers/SOSData/, courtesy of Uri Alon. Zak's data is available from his website, http://www.che.udel.edu/systems/people/zak.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号