首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cytoplasmic free Ca2+ ([Ca2+]cyt) is essential for the contraction and relaxation of blood vessels. The role of plasma membrane Na+/Ca2+ exchange (NCX) activity in the regulation of vascular Ca2+ homeostasis was previously ascribed to the NCX1 protein. However, recent studies suggest that a relatively newly discovered K+-dependent Na+/Ca2+ exchanger, NCKX (gene family SLC24), is also present in vascular smooth muscle. The purpose of the present study was to identify the expression and function of NCKX in arteries. mRNA encoding NCKX3 and NCKX4 was demonstrated by RT-PCR and Northern blot in both rat mesenteric and aortic smooth muscle. NCXK3 and NCKX4 proteins were also demonstrated by immunoblot and immunofluorescence. After voltage-gated Ca2+ channels, store-operated Ca2+ channels, and Na+ pump were pharmacologically blocked, when the extracellular Na+ was replaced with Li+ (0 Na+) to induce reverse mode (Ca2+ entry) activity of Na+/Ca2+ exchangers, a large increase in [Ca2+]cyt signal was observed in primary cultured aortic smooth muscle cells. About one-half of this [Ca2+]cyt signal depended on the extracellular K+. In addition, after the activity of NCX was inhibited by KB-R7943, Na+ replacement-induced Ca2+ entry was absolutely dependent on extracellular K+. In arterial rings denuded of endothelium, a significant fraction of the phenylephrine-induced and nifedipine-resistant aortic or mesenteric contraction could be prevented by removal of extracellular K+. Taken together, these data provide strong evidence for the expression of NCKX proteins in the vascular smooth muscle and their novel role in mediating agonist-stimulated [Ca2+]cyt and thereby vascular tone.  相似文献   

2.
Summary Microsomal fractions were isolated from gastric antrum and fundus smooth muscle of guinea pigs. Ca2+ uptake into and Ca2+ release from the membrane vesicles were studied by a rapid filtration method, and Ca2+ transport properties of the different regions of the stomach were compared. ATP-dependent Ca2+ uptake was similar in microsomes isolated from both regions. This uptake was increased by oxalate and was not affected by NaN3. Oxalate affected Ca2+ permeability of both antrum and fundus microsome vesicles similarly. Fundus microsome vesicles preincubated in 100mm NaCl and then diluted to 1/20 concentration with Na+-free medium had significantly higher ATP-independent Ca2+ uptake than vesicles preincubated in 100mm KCl and treated the same way. This was not true for antrum vesicles. Monensin abolished Na+-dependent Ca2+ uptake, and NaCl enhanced Ca2+ efflux from fundus microsome vesicles. The halflife values of Ca2+ loss from fundus vesicles in the presence of NaCl were significantly smaller than those in the presence of KCl. The release of Ca2+ from the vesicles within the first 3 min was accelerated by NaCl to three times that by KCl. However, NaCl had ro effect on Ca2+ release from antrum microsome vesicles.Results suggest two distinct mechanisms of stomach membrane Ca2+ transport: (1) ATP-dependent Ca2+ uptake and (2) Na+–Ca2+ exchange; the latter in the fundus only.  相似文献   

3.
Ca2+ transport was investigated in vesicles of sarcoplasmic reticulum subfractionated from bovine main pulmonary artery and porcine gastric antrum using digitonin binding and zonal density gradient centrifugation. Gradient fractions recovered at 15-33% sucrose were studied as the sarcoplasmic reticulum component using Fluo-3 fluorescence or 45Ca2+ Millipore filtration. Thapsigargin blocked active Ca2+ uptake and induced a slow Ca2+ release from actively loaded vesicles. Unidirectional 45Ca2+ efflux from passively loaded vesicles showed multicompartmental kinetics. The time course of an initial fast component could not be quantitatively measured with the sampling method. The slow release had a half-time of several minutes. Both components were inhibited by 20 microM ruthenium red and 10 mM Mg2+. Caffeine, inositol 1,4,5-trisphosphate, ATP, and diltiazem accelerated the slow component. A Ca2+ release component activated by ryanodine or cyclic adenosine diphosphate ribose was resolved with Fluo-3. Comparison of tissue responses showed that the fast Ca2+ release was significantly smaller and more sensitive to inhibition by Mg2+ and ruthenium red in arterial vesicles. They released more Ca2+ in response to inositol 1,4,5-trisphosphate and were more sensitive to activation by cyclic adenosine diphosphate ribose. Ryanodine and caffeine, in contrast, were more effective in gastric antrum. In each tissue, the fraction of the Ca2+ store released by sequential application of caffeine and inositol 1,4,5-trisphosphate depended on the order applied and was additive. The results indicate that sarcoplasmic reticulum purified from arterial and gastric smooth muscle represents vesicle subpopulations that retain functional Ca2+ channels that reflect tissue-specific pharmacological modulation. The relationship of these differences to physiological responses has not been determined.  相似文献   

4.
A plasma membrane-enriched fraction from rat myometrium shows ATP-Mg2+-dependent active calcium uptake which is independent of the presence of oxalate and is abolished by the Ca2+ ionophore A23187. Ca2+ loaded into vesicles via the ATP-dependent Ca2+ uptake was released by extravesicular Na+. This showed that the Na+/Ca2+ exchange and the Ca2+ uptake were both occurring in plasma membrane vesicles. In a medium containing KCl, vanadate readily inhibited the Ca2+ uptake (K1/2 5 microM); when sucrose replaced KCl, 400 microM-vanadate was required for half inhibition. Only a slight stimulation of the calcium pump by calmodulin was observed in untreated membrane vesicles. Extraction of endogenous calmodulin from the membranes by EGTA decreased the activity and Ca2+ affinity of the calcium pump; both activity and affinity were fully restored by adding back calmodulin or by limited proteolysis. A monoclonal antibody (JA3) directed against the human erythrocyte Ca2+ pump reacted with the 140 kDa Ca2+-pump protein of the myometrial plasma membrane. The Ca2+-ATPase activity of these membranes is not specific for ATP, and is not inhibited by mercurial agents, whereas Ca2+ uptake has the opposite properties. Ca2+-ATPase activity is also over 100 times that of calcium transport; it appears that the ATPase responsible for transport is largely masked by the presence of another Ca2+-ATPase of unknown function. Measurements of total Ca2+-ATPase activity are, therefore, probably not directly relevant to the question of intracellular Ca2+ control.  相似文献   

5.
To ascertain the function of H+ flux in active Ca2+ transport into sarcoplasmic reticulum vesicles, the effect of pH gradient on Ca2+ transport was examined. A transient H+ gradient (inside-acidic) was imposed on K+-loaded sarcoplasmic reticulum vesicles with the aid of K+-H+ exchange driven by nigericin. This proton gradient was dissipated rapidly and concomitantly with ATP-driven Ca2+ transport. Under these conditions, the initial rate of the Ca2+ uptake was increased about 1.5-fold. The stimulation of Ca2+ uptake was completely lost when the pH gradient was cancelled with an uncoupler plus membrane permeable cation before Ca2+ uptake. These results are interpreted in terms of H+ efflux coupled with Ca2+ transport.  相似文献   

6.
We examined the effect of phorbol myristate acetate (PMA), a potent activator of protein kinase C, on Ca2+ extrusion from cultured vascular smooth muscle cells (VSMCs) incubated in the absence of added extracellular Na+ (Na+o). Previously, strong experimental evidence was presented that the Na+o-independent Ca2+ extrusion from VSMCs is effected by the plasma membrane Ca2+ pump (Furukawa, K.-I., Tawada, Y., and Shigekawa, M. (1988) J. Biol. Chem. 263, 8058-8065). Brief (2 min) pretreatment of VSMCs with 30-300 nM PMA suppressed the intracellular Ca2+ transient induced with 1 microM ionomycin to about 60% of the control, whereas it accelerated the concomitant Na+o-independent 45Ca2+ extrusion by up to 20%. When the Ca2+ transient was induced with 0.1 microM angiotensin II, the PMA pretreatment markedly suppressed it and reduced also the rate of 45Ca2+ efflux from cells slightly. These effects of PMA were mimicked by 1-oleoyl-2-acetylglycerol, another protein kinase C activator, but were abolished by prior treatment of cells with staurosporine, an inhibitor of protein kinase C, or prior long incubation of cells with PMA. Analysis of the effect of PMA on [Ca2+]i dependence of the rate of Na+o-independent 45Ca2+ efflux revealed that PMA increased the maximum Ca2+ efflux rate without a significant change in the affinity for Ca2+. These results strongly suggest that the plasma membrane Ca2+ pump in VSMCs can be stimulated by PMA and that protein kinase C is involved in regulation of [Ca2+]i in intact VSMCs.  相似文献   

7.
The Na+/Ca2+ exchanger (NCX) is an ion transporter that exchanges Na+ and Ca2+ in either Ca2+ efflux or Ca2+ influx mode, depending on the ion gradients across the plasma membrane and the membrane potential. In heart, smooth muscle cells, neurons, and nephron cells, the NCX is thought to play an important role in the regulation of intracellular Ca2+ concentration. Recently, a novel selective inhibitor (KB-R7943 and SEA0400) of the Ca2+ influx mode of the NCX has been developed. NCX inhibitor is expected to be a pharmaceutical agent that offers effective protection against ischemia/reperfusion injury in several organs such as heart and kidney. Here, we summarize pharmacological profiles of KB-R7943 and SEA0400, the molecular mechanism of its action, and its future prospect as a novel pharmaceutical agent.  相似文献   

8.
We investigated the mechanisms of Ca2+ extrusion from cultured rat aortic smooth muscle cells while monitoring changes in the cytosolic Ca2+ concentration ([Ca2+]i) using fura 2 fluorescence. 45Ca2+ efflux from these cells consisted of two major mechanisms; one was dependent on the extracellular sodium concentration (Na+o) and the other was independent of Na+o. Na+o-dependent efflux increased monotonically with increasing [Ca2+]i between 0.1 and 1.0 microM, whereas Na+o-independent efflux reached a plateau at 0.6-1 microM [Ca2+]i with a half-maximum obtained at about 0.16 microM. At [Ca2+]i below 1 microM, the latter was significantly greater than the former. Unlike the Na+o-dependent mechanism, Na+o-independent 45Ca2+ efflux was inhibited almost entirely by extracellularly added La3+ or a combination of high extracellular pH (pH 8.8) and 20 mM Mg2+. It was also inhibited, although not completely, by compound 48/80, a calmodulin antagonist, and vanadate. These results strongly suggest that Na+o-dependent and Na+o-independent 45Ca2+ effluxes occur via the Na+/Ca2+ exchanger and the ATP-dependent Ca2+ pump, respectively. Sodium nitroprusside and atrial natriuretic factor, which are agents that stimulate intracellular production of cGMP, and 8-BrcGMP significantly accelerated the Na+o-independent 45Ca2+ efflux especially at low [Ca2+]i. Forskolin, dibutyryl cAMP, and 8-Br-cAMP, however, showed no stimulation. These results suggest that the plasma membrane Ca2+ pump is regulated by cGMP but not by cAMP in intact vascular smooth muscle cells.  相似文献   

9.
Plasma membrane vesicles isolated from rat liver exhibited an azide-insensitive Mg2+-ATP-dependent Ca2+ pump which accumulated Ca2+ at a rate of 5.1 +/- 0.5 nmol of calcium/mg of protein/min and reached a total accumulation of 33.2 +/- 2.6 nmol of calcium/mg of protein in 20 microM Ca2+ at 37 degrees C. Equiosmotic addition of 50 mM Na+ resulted in a loss of accumulated calcium. Measurement of Mg2+-ATP-dependent Ca2+ uptake in the presence of 50 mM Na+ revealed no effect of Na+ on the initial rate of Ca2+ uptake, but a decrease in the total accumulation. The half-maximal effect of Na+ on Ca2+ accumulation was achieved at 14 mM. The Ca2+ efflux rate constant in the absence of Na+ was 0.16 +/- 0.01 min-1, whereas the efflux rate constant in the presence of 50 mM Na+ was 0.25 +/- 0.02 min-1. Liver homogenate sedimentation fractions from 1,500 to 105,000 X g were assayed for azide-insensitive Mg2+-ATP-dependent Ca2+ accumulation. Na+-sensitive Ca2+ uptake activity was found to specifically co-sediment with the plasma membrane-associated enzymes, 5'-nucleotidase and Na+/K+-ATPase, whereas Na+-insensitive Ca2+ uptake was found to co-sediment with the endoplasmic reticulum-associated enzyme, glucose-6-phosphatase. The plasma membrane Ca2+ pump was also distinguished from the endoplasmic reticulum Ca2+ pump by its sensitivity to inhibition by vanadate. Half-maximal inhibition of plasma membrane Ca2+ uptake occurred at 0.8 microM VO4(3-), whereas half-maximal inhibition of microsomal Ca2+ uptake occurred at 40 microM.  相似文献   

10.
The Na+/Ca2+ exchanger is an ion transporter that exchanges Na+ and Ca2+ in either Ca2+ efflux or Ca2+ influx mode, depending on membrane potential and transmembrane ion gradients. In arterial smooth muscle cells, the Na+/Ca2+ exchanger is thought to participate in the maintenance of vascular tone by regulating cytosolic Ca2+ concentration. Recent pharmacological and genetic engineering studies have revealed that the Ca2+ influx mode of vascular Na+/Ca2+ exchanger type-1 (NCX1) is involved in the pathogenesis of salt-dependent hypertension. SEA0400, a specific Na+/Ca2+ exchange inhibitor that preferentially blocks the Ca2+ influx mode, lowers arterial blood pressure in salt-dependent hypertensive models, but not in normotensive rats or other types of hypertensive rats. Furthermore, heterozygous mice with reduced expression of NCX1 are resistant to development of salt-dependent hypertension, whereas transgenic mice with vascular smooth muscle-specific overexpression of NCX1 readily develop hypertension after high-salt loading. SEA0400 reverses the cytosolic Ca2+ elevation and vasoconstriction induced by nanomolar ouabain, as well as humoral factors in salt-loaded animals. One possibility is that circulating endogenous cardiotonic steroids may be necessary for NCX1-mediated hypertension. These findings help to explain how arterial smooth muscle cells in blood vessels contribute to salt-elicited blood pressure elevation and suggest that NCX1 inhibitors might be therapeutically useful for salt-dependent hypertension.  相似文献   

11.
(CaMg)ATPase [(Ca2+ + Mg2+)-dependent ATPase] was partially purified from a microsomal fraction of the smooth muscle of the pig stomach (antrum). Membranes were solubilized with deoxycholate, followed by removal of the detergent by dialysis. The purified (CaMg)ATPase has a specific activity (at 37 degrees C) of 157 +/- 12.1 (7)nmol.min-1.mg-1 of protein, and it is stimulated by calmodulin to 255 +/- 20.9 (7)nmol.min.mg-1. This purification of the (CaMg)ATPase resulted in an increase of the specific activity by approx. 18-fold and in a recovery of the total enzyme activity of 55% compared with the microsomal fraction. The partially purified (CaMg)ATPase still contains some Mg2+-and (Na+ + K+)-dependent ATPase activities, but their specific activities are increased relatively less than that of the (CaMg)ATPase. The ratios of the (CaMg)ATPase to Mg2+- and (Na+ + K+)-dependent ATPase activities increase from respectively 0.14 and 0.81 in the crude microsomal fraction to 1.39 and 9.07 in the purified preparation. During removal of the deoxycholate by dialysis, vesicles were reconstituted which were capable of ATP-dependent Ca2+ transport.  相似文献   

12.
Vascular endothelial cells (EC) and smooth muscle cells (SMC) require a decrease in cytoplasmic Ca2+ concentration after activation. This can be achieved by Ca2+ sequestration by the sarco-/endoplasmic reticulum Ca2+ pumps (SERCA) and Ca2+ extrusion by plasma membrane Ca2+ pumps (PMCA) and Na+-Ca2+-exchangers (NCX). Since the two cell types differ in their structure and function, we compared the activities of PMCA, NCX and SERCA in pig coronary artery EC and SMC, the types of isoforms expressed using RT-PCR, and their protein abundance using Western blots. The activity of NCX is higher in EC than in SMC but those of PMCA and SERCA is lower. Consistently, the protein abundance for NCX protein is higher in EC than in SMC and those of PMCA and SERCA is lower. Based on RT-PCR experiments, the types of RNA present are as follows: EC for PMCA1 while SMC for PMCA4 and PMCA1; EC for SERCA2 and SERCA3 and SMC for SERCA2. Both EC and SMC express NCX1 (mainly NCX1.3). PMCA, SERCA and NCX differ in their affinities for Ca2+ and regulation. Based on these observations and the literature, we conclude that the tightly regulated Ca2+ removal systems in SMC are consistent with the cyclical control of contractility of the filaments and those in EC are consistent with Ca2+ regulation of the endothelial nitric oxide synthase near the cell surface. The differences between EC and SMC should be considered in therapeutic interventions of cardiovascular diseases.  相似文献   

13.
The purpose of this study was to physiologically characterize the basolateral Na(+)/Ca(2+) exchanger (NCX) in basolateral membrane vesicles (BLMVs) of hepatopancreas and antennal gland of intermolt crayfish. Conditions were optimized to measure Na(+)-dependent Ca(2+) uptake and retention in the BLMV including use of intravesicular (IV) oxalate and measuring initial uptake rates at 20 s. Na(+)-dependent Ca(2+) uptake rate into BLMV was temperature insensitive. Na(+)-dependent Ca(2+) uptake rate was dependent upon free Ca(2+) with saturable Michaelis-Menten kinetics determined as follows: hepatopancreas, maximal uptake rate (J(max))=2.45 nmol/mg per min, concentration at which carrier operates at half-maximal uptake rate (K(m))=0.69 microM Ca(2+); antennal gland, J(max)=13.2 nmol/mg per min, K(m)=0.59 microM Ca(2+). The two vesicle populations exhibited different sensitivity to putative NCX inhibitors. Benzamil had no effect on Na(+)-dependent Ca(2+) uptake rate in hepatopancreas; in antennal gland it was inhibitory at concentrations up to 30 microM and was stimulatory at higher concentrations. Conversely the inhibitor quinacrine was inhibitory at 10 microM in hepatopancreas and was stimulatory at 1000 microM; meanwhile it was ineffective in antennal gland BLMV. Short circuiting the BLMV had no effect on Na(+)-dependent Ca(2+) uptake rate suggesting that the process may be electroneutral. Compared with another prominent basolateral transporter in hepatopancreas the plasma membrane Ca(2+) ATPase (PMCA), the NCX has 70-fold greater J(max) (at comparable temperature) and a lower affinity. In antennal gland the NCX has 40-fold greater J(max) and a lower affinity. In hepatopancreas and antennal gland BLMV NCX appears to determine the rate of basolateral Ca(2+) efflux in intermolt.  相似文献   

14.
The nature of downhill Ca2+ net-transport into human erythrocytes was investigated using the experimental models of Ca2+ pump inhibition by vanadate and of intracellular chelation of Ca2+ by quin2. Ca2+ uptake by erythrocytes loaded with 0.5 mM vanadate and suspended in 145 mM Na+ -5 mM K+ media was reduced by about 60% when medium K+ was raised to 80 mM. Organic and inorganic Ca2+ entry blockers such as nifedipine (10(-5) M), verapamil (10(-4) M), diltiazem (10(-4) M), Co2+ (1.5 mM) and Cu2+ (0.1 mM) as well as the K+ channel blocker quinidine (1mM) inhibited Ca2+ uptake in 145 mM Na+ -5 mM K+ media by 60-75%. Flunarizine was less effective. In vanadate-loaded cells suspended in 70 mM Na+ -80 mM K+ media, in contrast, flunarizine exerted a dose-dependent inhibition of Ca2+ uptake by up to 80% at 10(-5) M, the other blockers being ineffective (except for verapamil at 10(-4) M). A similar pattern of inhibition was seen in quin2-loaded erythrocytes. The different susceptibility towards inhibitors may indicate that passive Ca2+ uptake by vanadate-loaded erythrocytes suspended in 145 mM Na+ -5 mM K+ media, on the one hand, and by vanadate-loaded erythrocytes suspended in 70 mM Na+ -80 mM K+ media as well as by quin2-loaded erythrocytes, on the other hand, is mediated by two different transport components.  相似文献   

15.
The cardiac Na(+)/Ca(2+) exchanger (NCX1) is the predominant mechanism for the extrusion of Ca(2+) from beating cardiomyocytes. The role of protein phosphorylation in the regulation of NCX1 function in normal and diseased hearts remains unclear. In our search for proteins that interact with NCX1 using a yeast two-hybrid screen, we found that the C terminus of calcineurin Abeta, containing the autoinhibitory domain, binds to the beta1 repeat of the central cytoplasmic loop of NCX1 that presumably constitutes part of the allosteric Ca(2+) regulatory site. The association of NCX1 with calcineurin was significantly increased in the BIO14.6 cardiomyopathic hamster heart compared with that in the normal control. In hypertrophic neonatal rat cardiomyocytes subjected to chronic phenylephrine treatment, we observed a marked depression of NCX activity measured as the rate of Na(+)(i)-dependent (45)Ca(2+) uptake or the rate of Na(+)(o)-dependent (45)Ca(2+) efflux. Depressed NCX activity was partially and independently reversed by the acute inhibition of calcineurin and protein kinase C activities with little effect on myocyte hypertrophic phenotypes. Studies of NCX1 deletion mutants expressed in CCL39 cells were consistent with the view that the beta1 repeat is required for the action of endogenous calcineurin and that the large cytoplasmic loop may be required to maintain the interaction of the enzyme with its substrate. Our data suggest that NCX1 is a novel regulatory target for calcineurin and that depressed NCX activity might contribute to the etiology of in vivo cardiac hypertrophy and dysfunction occurring under conditions in which both calcineurin and protein kinase C are chronically activated.  相似文献   

16.
Two alpha-isoforms of the Na+-K+-ATPase are expressed in vascular smooth muscle cells (VSMCs). The alpha 1-isoform is proposed to serve a cytosolic housekeeping role, whereas the alpha 2-isoform modulates Ca2+ storage via coupling to the Na+-Ca2+ exchanger (NCX) in a subsarcolemmal compartment. To evaluate the ramifications of this proposed interaction, Ca2+-store load and the contributions of the primary Ca2+ transporters to Ca2+ clearance were studied in aortic VSMCs from embryonic wild-type (WT) and Na+-K+-ATPase alpha 2-isoform gene-ablated, homozygous null knockout (alpha 2-KO) mice. Ca2+ stores were unloaded by inhibiting the sarco(endo)plasmic reticulum Ca2+-ATPase with cyclopiazonic acid (CPA) in Ca2+-free media to limit Ca2+ influx. Ca2+ clearance by the plasma membrane Ca2+-ATPase (PMCA), NCX, or mitochondria was selectively inhibited. In WT VSMCs, NCX accounted for 90% of the Ca2+ efflux. In alpha 2-KO VSMCs, preferential clearance of store-released Ca2+ by NCX was lost, whereas PMCA activity was increased. Selective inhibition of the alpha 2-isoform (0.5 microM ouabain for 20 min), before treatment with CPA enhanced the store load in VSMCs from WT, but not alpha 2-KO mice. A subsequent analysis of capacitative Ca2+ entry (CCE) indicated that the magnitude of Ca2+ influx was significantly greater in alpha 2-KO cells. Our findings support the concept of a subsarcolemmal space where the alpha 2-isoform coupled with NCX modulates Ca2+-store function and, thereby, CCE.  相似文献   

17.
We have previously shown that there is high Na(+)/Ca(2+) exchange (NCX) activity in bovine adrenal chromaffin cells. In this study, by monitoring the [Ca(2+)](i) change in single cells and in a population of chromaffin cells, when the reverse mode of exchanger activity has been initiated, we have shown that the NCX activity is enhanced by K(+). The K(+)-enhanced activity accounted for a significant proportion of the Na(+)-dependent Ca(2+) uptake activity in the chromaffin cells. The results support the hypothesis that both NCX and Na(+)/Ca(2+)-K(+) exchanger (NCKX) are co-present in chromaffin cells. The expression of NCKX in chromaffin cells was further confirmed using PCR and northern blotting. In addition to the plasma membrane, the exchanger activity, measured by Na(+)-dependent (45)Ca(2+) uptake, was also present in membrane isolated from the chromaffin granules enriched fraction and the mitochondria enriched fraction. The results support that both NCX and NCKX are present in bovine chromaffin cells and that the regulation of [Ca(2+)](i) is probably more efficient with the participation of NCKX.  相似文献   

18.
We examined the effect of cGMP on Na+/Ca2+ exchange in rat aortic smooth muscle cells (VSMCs) in primary culture. The intracellular Ca2+ concentration [( Ca2+]i) was raised by adding ionomycin to VSMCs incubated at high extracellular pH (pH0) (pH0 = 8.8) and high extracellular Mg2+ (Mg2+0) (Mg2+0 = 20 mM), conditions that inhibit activity of the sarcolemmal Ca2+ pump. 45Ca2+ efflux observed under these conditions was mostly extracellular Na+ (Na+0)-dependent and thus presumably catalyzed by the Na+/Ca2+ exchanger. Brief treatment of VSMCs with 8-bromo-cGMP or atrial natriuretic peptide increased this Na+0-dependent 45Ca2+ efflux by about 50%. The 8-bromo-cGMP treatment did not significantly influence total cell Na+, membrane potential, and cell pH. Conversely, when VSMCs were loaded with Na+ and then exposed to a Na+0-free medium, the rate of 45Ca2+ uptake into VSMCs increased as cell Na+ increased. Prior treatment of VSMCs with 8-bromo-cGMP accelerated 45Ca2+ uptake by up to 60% without influencing Na+ loading itself. Treatment of VSMCs with 25 microM 2,5-di-(tert-butyl)-1,4-benzohydroquinone, an inhibitor of the sarcoplasmic reticulum Ca(2+)-ATPase, induced a transient elevation of [Ca2+]i. 8-Bromo-cGMP stimulated the rate of recovery phase of this Ca2+ transient measured in the high pHo/high Mg2+o medium. All these results indicate that cGMP stimulates Na+/Ca2+ exchange in VSMCs.  相似文献   

19.
Na(+)- Ca(2+) exchanger (NCX) has been proposed to play a role in refilling the sarco/endoplasmic reticulum (SER) Ca(2+) pool along with the SER Ca(2+) pump (SERCA). Here, SERCA inhibitor thapsigargin was used to determine the effects of SER Ca(2+) depletion on NCX-SERCA interactions in smooth muscle cells cultured from pig coronary artery. The cells were Na(+)-loaded and then placed in either a Na(+)-containing or in a Na(+)-substituted solution. Subsequently, the difference in Ca(2+) entry between the two groups was examined and defined as the NCX mediated Ca(2+) entry. The NCX mediated Ca(2+) entry in the smooth muscle cells was monitored using two methods: Ca(2+)sensitive fluorescence dye Fluo-4 and radioactive Ca(2+). Ca(2+)-entry was greater in the Na(+)-substituted cells than in the Na(+)-containing cells when measured by either method. This difference was established to be NCX-mediated as it was sensitive to the NCX inhibitors. Thapsigargin diminished the NCX mediated Ca(2+) entry as determined by either method. Immunofluorescence confocal microscopy was used to determine the co-localization of NCX1 and subsarcolemmal SERCA2 in the cells incubated in the Na(+)-substituted solution with or without thapsigargin. SER Ca(2+) depletion with thapsigargin increased the co-localization between NCX1 and the subsarcolemmal SERCA2. Thus, inhibition of SERCA2 leads to blockade of constant Ca(2+) entry through NCX1 and also increases proximity between NCX1 and SERCA2. This blockade of Ca(2+) entry may protect the cells against Ca(2+)-overload during ischemia-reperfusion when SERCA2 is known to be damaged.  相似文献   

20.
We examined the effect of membrane potential (Em) on the activity of the plasma membrane Ca2+ pump in cultured rat aortic smooth muscle cells (VSMCs). Inside-negative K+ diffusion potential higher or lower than the resting Em (-46 mV) was artificially imposed on VSMCs with various concentrations of extracellular K+ (K+o) and 1 microM valinomycin. We found that the recovery phase of the intracellular Ca2+ transient elicited with 1 microM ionomycin was accelerated by depolarizing Em, whereas it was retarded by hyperpolarizing Em. The rate of extracellular Na+ (Na+o)-independent 45Ca2+ efflux from VSMCs stimulated with 1 microM ionomycin increased almost linearly with a change in Em from -98 to -3 mV. This effect of Em was abolished by extracellularly added LaCl3 or a combination of high pH (pH 8.8) and high Mg2+ (20 mM), conditions that presumably inhibit the plasma membrane Ca2+ pump (Furukawa, K.-I., Tawada, Y., & Shigekawa, M. (1988) J. Biol. Chem. 263, 8058-8065). Intracellular contents of Na+ and K+ and intracellular pH, on the other hand, were not influenced by the change in Em under the conditions used. These results indicate that alteration in Em can modulate the intracellular Ca2+ concentration in intact VSMCs by changing the rate of Ca2+ extrusion by the plasma membrane Ca2+ pump. The data strongly suggest that the plasma membrane Ca2+ pump in VSMCs is electrogenic.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号