首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Jana S  Choudhuri MA 《Plant physiology》1982,70(4):1125-1127
Changes in the activities of ribulose-1,5-bisphosphate carboxylase (RuBPcase) and phosphoenolpyruvate carboxylase (PEPcase) during aging and senescence of leaves of submersed aquatic angiosperms, Potamogeton pectinatus L., Vallisneria spiralis L., and Hydrilla verticillata (L.f.) Royle were studied. The activity of RuBPcase decreased with both aging and senescence in three species. PEPcase activity increased from young to mature leaves in all three plants and also in old leaves of Hydrilla. The ratio of RuBPcase to PEPcase activity was lowest in mature and highest in old leaves, and increased with aging of isolated mature leaves in Potamogeton and Vallisneria, but decreased markedly in Hydrilla with aging and senescence. Kinetin treatment (0.23 mm) increased RuBPcase activity in three species and PEPcase activity in Potamogeton and Vallisneria, but decreased PEPcase activity in Hydrilla. Treatments with 2-chloroethylphosphonic acid (Ethrel, 0.69 mm) and abscisic acid (ABA, 0.075 mm) showed almost an opposite trend.  相似文献   

2.
A heterotrophic cotton (Gossypium hirsutum L. cv. Stoneville 825) cell suspension culture was adapted to grow photoautotrophically. After two years in continuous photoautotrophic culture at 5% CO2 (balance air), the maximum growth rate of the photoautotrophic cell line was a 400% fresh weight increase in eight days. The Chl concentration was approximately 500 g per g fresh weight.Elevated CO2 (1%–5%) was required for culture growth, while the ambient air of the culture room (600 to 700 ul CO2 1–1) or darkness were lethal. The cell line had no net photosynthesis at 350 ul 1–1 CO2, 2% O2, and dark respiration ranged from 29 to 44 mol CO2 mg–1 Chl h–1. Photosynthesis was inhibited by O2. The approximate 1:1 ratio of ribulose 1,5-bisphosphate carboxylase (RuBPcase) to phosphoenolpyruvate carboxylase (PEPcase) (normally about 6:1 in mature leaves of C3 plants) was due to low RuBPcase activity relative to that of C3 leaves, not to high PEPcase activity. The PEPcase activity per unit Chl in the cell line was identical to that of spinach leaves, while the RuBPcase activity was only 15% of the spinach leaf RuBPcase activity. RuBPcase activity in the photoautotrophic cells was not limited by a lack of activation in vivo, since the enzyme in a rapidly prepared cell extract was 73% activated. No evidence of enzyme inactivation by secondary compounds in the cells was found as can be found with cotton leaves. Low RuBPcase activity and high respiration rates are most likely important factors in the low photosynthetic efficiency of the cells at ambient CO2.Abbreviations Chl chlorophyll - COT heterotrophic cotton cell line - COT-P photoautotrophic cotton cell line - DCMU 3-(3,4-dichlorophenyl)-1,1-dimethylurea - HEPES N-2-hydroxyethylpiperazine-N-2-ethanesulfonic acid - Rubisco ribulose 1,5-bisphosphate carboxylase/oxygenase - RuBP ribulose 1,5-bisphosphate - RuBPcase RuBP carboxylase - PEP phosphoenolpyruvate - PEPcase phosphoenolpyruvate carboxylase - MX Murashige and Skoog medium with 0.4 mg 1–1 2,4-D - KT photomixotrophic medium with 1% sucrose - KTo KT medium with no carbohydrate - KTPo KTo medium supplemented with 0.3 M Picloram - CER CO2 exchange rate - PCER CO2 exchange rate in the light  相似文献   

3.
Panicum milioides represents the first well-documented example of a higher plant species with reduced photorespiration and O2 inhibition of photosynthesis. We have investigated the biochemical mechanism(s) involved in reducing O2 sensitivity of photosynthesis in this species by parallel enzyme inhibitor experiments with thin leaf slices of P. milioides and C3 and C4Panicum species. The reduced O2 sensitivity of net photosynthesis in P. milioides gradually increased with increasing concentrations of the phosphoenolpyruvate carboxylase (EC 4.1.1.31) inhibitors, maleate and malonate. At saturating levels of inhibitor, photosynthesis in 2% O2 was decreased by about 18%, and the inhibitory effects of both 21% O2 and 49% O2 were identical to those observed with a C3Panicum species in the absence or presence of inhibitor. A significant potential for C4 photosynthesis in P. milioides, compared to its complete absence in a C3Panicum species, was demonstrated on the basis of: (a) a coupling of leaf slice CO2 fixation by phosphoenolpyruvate carboxylase with the C3 cycle; (b) NAD-malic enzyme (EC 1.1.1.39)-dependent aspartate and malate decarboxylation in leaf slices; (c) a full complement of C4 cycle enzymes in leaf extracts, including pyruvate, Pi dikinase (EC 2.7.9.1) and NAD-malic enzyme; and (d) Kranz-like leaf anatomy with numerous plasmodesmata traversing the mesophyll-bundle sheath interfacial cell wall. These data indicate that the reduced photorespiration and O2 inhibition of photosynthesis in P. milioides is due to phosphoenolpyruvate carboxylase participation, possibly by creating a limited C4-like CO2 pump, rather than an altered ribulose 1,5-bisphosphate carboxylase-oxygenase (EC 4.1.1.39).  相似文献   

4.
Activities of key enzymes of Calvin cycle and C4 metabolism, rate of 14CO2 fixation in light and dark and the initial products of photosynthetic 14CO2 fixation were determined in flag leaf and different ear parts of wheat viz. pericarp, awn and glumes. Compared to the activities of RuBP carboxylase and other Calvin cycle enzymes viz. NADP-glyceraldehyde-3-phosphate dehydrogenase, NAD-glyceraldehyde-3-phosphate dehydrogenase and ribulose-5-phosphate kinase, the levels of PEP carboxylase and other enzymes of C4 metabolism viz. NADP-malate dehydrogenase, NAD-malate dehydrogenase, NADP-malic enzyme, NAD-malic enzyme, glutamate oxaloacetate transaminase genase, NADP-malic enzyme, NAD-malic enzyme, glutamate oxaloacetate transaminase and glutamate pyruvate transaminase, were generally greater in ear parts than in the flag leaf. In contrast to CO2 fixation in light, the various ear parts incorporated CO2 in darkness at much higher rates than flag leaf. In short term assimilation of 14CO2 by illuminated ear parts, most of the 14C was in malate with less in 3-phosphoglyceric acid, whereas flag leaves incorporated most into 3-phosphoglyceric acid. It seems likely that ear parts have the capability of assimilating CO2 by the C4 pathway of photosynthesis and utilise PEP carboxylase for recapturing the respired CO2.  相似文献   

5.
Single-rooted sweet potato leaves having a petiole with a fragment of stem allocated exceptionally large amounts of photosynthates to tuberous roots, the only major storage organ, throughout an experimental period of 50 d. The increase in photosynthetic activity for CO(2) fixation depended exclusively on the development of sink activity due to the growth of tuberous roots. Thus this model expressed a remarkable feed-forward effect on the photosynthetic source-sink balance. The level of ribulose-1,5-bisphosphate carboxylase (RuBPcase) protein in the leaves increased continuously during the period. The lowered initial as well as total activity of RuBPcase observed at the start of the experiment was raised with the cancellation of the sink-limited state due to the development of tuberous roots. The maximum activity determined after removing some inhibitor(s) from the enzyme by treating the leaf extract with SO(4)(2-) was much greater than the total activity and remained approximately constant throughout the experimental period. The clear decrease in the difference between maximum and total activities with the development of tuberous roots might reflect the reactivation of RuBPcase due to the removal of some inhibitor(s) from the enzyme through the cancellation of the sink-limited state.  相似文献   

6.
Detached wheat leaves were illuminated in air until a steady rate of photosynthesis was established. Then the gas was changed to 1% O2, 99% N2 and after 2.5 h further illumination the capacity of the leaves for photosynthesis in air was decreased to approximately 50%. Measurement of RuBP carboxylase activity in extracts showed that inhibition of photosynthesis was accompanied by 70% inactivation of this enzyme. The capacity for photosynthesis and the activity of RuBP carboxylase were recovered when leaves were returned to normal air. Extracts of the leaves made when photosynthesis and carboxylase activity were low, recovered most of the lost carboxylase activity when supplemented with bicarbonate and magnesium ions. The time courses for activation and inactivation of the RuBP carboxylase in these experiments suggests the operation of a mechanism that has not yet been elucidated.  相似文献   

7.
The induction of Crassulacean acid metabolism in M:esembryanthemum crystallinum was investigated in response to foliar application of gibberellic acid (GA). After 5 weeks of treatment, GA-treated plants showed 1.7- to almost a 4-fold increase of phosphoenolpyruvate carboxylase (PEPcase) activity with a concomitant increase in acid metabolism when compared to control plants. Immunoblot analysis indicated an increase in the PEPcase protein similar to that of salt treatment while Rubisco did not show a similar rise. The results indicate that exogenously applied GA accelerates plant developmental expression of PEPcase and Crassulacean acid metabolism in M: crystallinum.  相似文献   

8.
Panicum milioides, a naturally occurring species with C4-like Kranz leaf anatomy, is intermediate between C3 and C4 plants with respect to photo-respiration and the associated oxygen inhibition of photosynthesis. This paper presents direct evidence for a limited degree of C4 photosynthesis in this C3-C4 intermediate species based on: (a) the appearance of 24% of the total 14C fixed following 4 s photosynthesis in 14CO2-air by excised leaves in malate and aspartate and the complete transfer of label from the C4 acids to Calvin cycle intermediates within a 15 s chase in 12CO2-air; (b) pyruvate- or alanine-enhanced light-dependent CO2 fixation and pyruvate stimulation ote- or alanine-enhanced light-dependent CO2 fixation and pyruvate stimulation of oxaloacetate- or 3-phosphoglycerate-dependent O2 evolution by illuminated mesophyll protoplasts, but not bundle sheath strands; and (c) NAD-malic enzyme-dependent decarboxylation of C4 acids at the C-4 carboxyl position, C4 acid-dependent O2 evolution, and 14CO2 donation from (4-14C)C4 acids to Calvin cycle intermediates during photosynthesis by bundle sheath strands, but not mesophyll protoplasts. However, P. milloides differs from C4 plants in that the activity of the C4 cycle enzymes is only 15 to 30% of a C4 Panicum species and the Calvin cycle and phosphoenolpyruvate carboxylase are present in both cell types. From these and related studies (Rathnam, C.K.M. and Chollet, R. (1979) Arch. Biochem. Biophys. 193, 346-354; (1978) Biochem. Biophys. Res. Commun. 85, 801-808) we conclude that reduced photorespiration in P. milioides is due to a limited degree of NAD-malic enzyme-type C4 photosynthesis permitting an increase in pCO2 at the site of bundle sheath, but not mesophyll, ribulose-bisphosphate carboxylase-oxygenase.  相似文献   

9.
Metabolite profiles and activities of key enzymes in the metabolism of organic acids, nitrogen and amino acids were compared between chlorotic leaves and normal leaves of ‘Honeycrisp’ apple to understand how accumulation of non-structural carbohydrates affects the metabolism of organic acids, nitrogen and amino acids. Excessive accumulation of non-structural carbohydrates and much lower CO2 assimilation were found in chlorotic leaves than in normal leaves, confirming feedback inhibition of photosynthesis in chlorotic leaves. Dark respiration and activities of several key enzymes in glycolysis and tricarboxylic acid (TCA) cycle, ATP-phosphofructokinase, pyruvate kinase, citrate synthase, aconitase and isocitrate dehydrogenase were significantly higher in chlorotic leaves than in normal leaves. However, concentrations of most organic acids including phosphoenolpyruvate (PEP), pyruvate, oxaloacetate, 2-oxoglutarate, malate and fumarate, and activities of key enzymes involved in the anapleurotic pathway including PEP carboxylase, NAD-malate dehydrogenase and NAD-malic enzyme were significantly lower in chlorotic leaves than in normal leaves. Concentrations of soluble proteins and most free amino acids were significantly lower in chlorotic leaves than in normal leaves. Activities of key enzymes in nitrogen assimilation and amino acid synthesis, including nitrate reductase, glutamine synthetase, ferredoxin and NADH-dependent glutamate synthase, and glutamate pyruvate transaminase were significantly lower in chlorotic leaves than in normal leaves. It was concluded that, in response to excessive accumulation of non-structural carbohydrates, glycolysis and TCA cycle were up-regulated to “consume” the excess carbon available, whereas the anapleurotic pathway, nitrogen assimilation and amino acid synthesis were down-regulated to reduce the overall rate of amino acid and protein synthesis.  相似文献   

10.
Single-rooted soybean leaves were used to investigate the suppression of photosynthesis through end-product inhibition during acclimation to CO(2 )enrichment. The photosynthetic activity was greater in leaves cultured at a CO(2) partial pressure of 70 Pa (high-CO(2)) than that in the leaves cultured at 35 Pa CO(2) (control) during the initial exposure to CO(2) enrichment but then decreased rapidly with a large accumulation of starch, to well below the level of the control leaves. The response curve of photosynthesis (A) to the intercellular CO(2) concentration (Ci) in the high-CO(2) leaves cultured long-term exhibited a significantly low initial gradient. However, on exposure to darkness for 48 h, the initial gradient of the A to Ci curve and rate of photosynthesis were completely restored, and almost all of the accumulated starch was expended. The ribulose bisphosphate carboxylase (RuBPcase) content and activation ratio in the high-CO(2) leaves remained high and roughly constant during the experiment, and were unchanged by the exposure, while this enzyme was slightly inactivated or inhibited after long-term exposure to CO(2) enrichment. The lower rate of photosynthesis in the high-CO(2) leaves could be linearly increased to a rate approaching the control level by increasing the external atmospheric [CO(2)], which thereby compensated for a reduced CO(2) transfer diffusion from the intercellular space to the stroma in chloroplasts. It is consequently concluded that, during the acclimation to CO(2 )enrichment, the suppression of photosynthesis through end-product inhibition was mainly caused by a lowering of the carboxylation efficiency of RuBPcase due to hindrance of CO(2) diffusion from the intercellular space to the stroma in chloroplasts brought about by the large accumulation of starch.  相似文献   

11.
The internal salt content and distribution in photosynthetictissues as well as the effect of NaCl on photosynthetic carbonfixation enzymes was investigated in two seagrass species fromthe Red Sea. Concentrations of both Na+ and Cl were lower in the chloroplast-richepidermis than in underlying cell layers in Halophila stipulacea.In Halodule uninervis, the concentration of Na+ was lower inthe epidermis than in the underlying cells, while K+ was evenlydistributed between cell layers. The epidermal concentrationsof Na+ were estimated to be 0.17 and 0.10 M for Halophila stipulaceaand Halodule uninervis, respectively, which were about to the average leaf concentrations. Epidermal Cl concentrationof Halophila stipulacea was estimated to be 0.08 M, a valueonly about of the overall leaf concentration. Phosphoenolpyruvate carboxylase (PEPcase) extracted from leavesof these seagrasses showed increased activity at 0.05–0.3M NaCl in vitro. Ribulose-l, 5-bisphosphate carboxylase (RuBPcase)activity, on the other hand, was inhibited by NaCl at all testedconcentrations. At epidermal NaCl concentrations, PEPcase activitywas thus stimulated while RuBPcase was inhibited. The reducedRuBPcase activity at such concentrations compared to salt-freeconditions was still sufficient to account for observed photosyntheticrates. We conclude that these seagrasses have adapted to a saline environmentboth by maintaining relatively low ion concentrations in theepidermis where photosynthesis occurs and by having carbon-fixingenzymes capable of functioning in the presence of salt.  相似文献   

12.
Ueno  O 《Journal of experimental botany》1998,49(327):1637-1646
Cellular localization of photosynthetic enzymes was investigated by immunogold electron microscopy for leaves of nine C4 grasses (three NADP-malic enzyme (NADP-ME)subtype species, three NAD-malic enzyme (NAD-ME) subtype species, and three phosphoenolpyruvate carboxykinase (PCK) subtype species), two C4 sedges (NADP-ME subtype species) and two C4 dicots (an NADP-ME and an NADP/NAD-ME subtype species). In leaves of all species, immunogold labelling was present for phosphoenolpyruvate carboxylase in the cytosol of the mesophyll cells (MC) and for ribulose-1,5-bisphosphate carboxylase/oxygenase in the chloroplasts of the bundle sheath cells (BSC). However, considerable specific variation was found in the intercellular patterns of labelling for pyruvate orthophosphate dikinase (PPDK). In the NADP-ME grasses, two NAD-ME grasses, and the dicots, significant labelling for PPDK was present in the both the BSC and the MC chloroplasts. In the other NAD-ME grass, the PCK grasses, and the sedges, labelling for PPDK was present almost exclusively in the chloroplasts of the MC. These patterns were observed in the leaves of both young seedlings and mature plants. These results indicate that the accumulation of PPDK in leaves of C4 plants is not necessarily restricted to the MC, although the chloroplasts of the MC accumulate more than those of the BSC.Key words: C4 plants, immunolocalization, phosphoenolpyruvate carboxylase, pyruvate orthophosphate dikinase, ribulose-1,5-bisphosphate carboxylase/oxygenase.   相似文献   

13.
The C(4) photosynthetic pathway involves the assimilation of CO(2) by phosphoenolpyruvate carboxylase (PEPC) and the subsequent decarboxylation of C(4) acids. The enzymes of the CO(2) concentrating mechanism could be affected under water deficit and limit C(4) photosynthesis. Three different C(4) grasses were submitted to gradually induced drought stress conditions: Paspalum dilatatum (NADP-malic enzyme, NADP-ME), Cynodon dactylon (NAD-malic enzyme, NAD-ME) and Zoysia japonica (PEP carboxykinase, PEPCK). Moderate leaf dehydration affected the activity and regulation of PEPC in a similar manner in the three grasses but had species-specific effects on the C(4) acid decarboxylases, NADP-ME, NAD-ME and PEPCK, although changes in the C(4) enzyme activities were small. In all three species, the PEPC phosphorylation state, judged by the inhibitory effect of L: -malate on PEPC activity, increased with water deficit and could promote increased assimilation of CO(2) by the enzyme under stress conditions. Appreciable activity of PEPCK was observed in all three species suggesting that this enzyme may act as a supplementary decarboxylase to NADP-ME and NAD-ME in addition to its role in other metabolic pathways.  相似文献   

14.
Effects of adenylates on the activity of mitochondrial NAD-malic enzyme from NAD-malic-enzyme (NAD-ME)-type and phosphoenolpyruvate-carboxykinase-(PKC)-type C4 plants are examined. At physiological concentrations, ATP, ADP, and AMP all inhibit the enzyme from Atriplex spongiosa and Panicum miliaceum (NAD-ME-type plants), with ATP the most inhibitory species. The degree of inhibition is greater with subsaturating levels of activator, malate, and Mn2+. NAD-malic enzyme from Urochloa panicoides (PCK-type) is activated by ATP (up to 10-fold) and inhibited by ADP and AMP. These effects are discussed in relation to regulation of C4 photosynthesis.  相似文献   

15.
Phosphoenolpyruvate carboxylase (PEPC; EC4.1.1.31) plays a key role during C(4) photosynthesis. The enzyme is activated by metabolites such as glucose-6-phosphate and inhibited by malate. This metabolite sensitivity is modulated by the reversible phosphorylation of a conserved serine residue near the N terminus in response to light. The phosphorylation of PEPC is modulated by a protein kinase specific to PEPC (PEPC-PK). To explore the role PEPC-PK plays in the regulation of C(4) photosynthetic CO(2) fixation, we have transformed Flaveria bidentis (a C(4) dicot) with antisense or RNA interference constructs targeted at the mRNA of this PEPC-PK. We generated several independent transgenic lines where PEPC is not phosphorylated in the light, demonstrating that this PEPC-PK is essential for the phosphorylation of PEPC in vivo. Malate sensitivity of PEPC extracted from these transgenic lines in the light was similar to the malate sensitivity of PEPC extracted from darkened wild-type leaves but greater than the malate sensitivity observed in PEPC extracted from wild-type leaves in the light, confirming the link between PEPC phosphorylation and the degree of malate inhibition. There were, however, no differences in the CO(2) and light response of CO(2) assimilation rates between wild-type plants and transgenic plants with low PEPC phosphorylation, showing that phosphorylation of PEPC in the light is not essential for efficient C(4) photosynthesis for plants grown under standard glasshouse conditions. This raises the intriguing question of what role this complexly regulated reversible phosphorylation of PEPC plays in C(4) photosynthesis.  相似文献   

16.
One group of C4, species utilize a NAD-malic enzyme to decarboxylate C4 acids. This enzyme, together with a major isoenzyme of aspartate aminotransferase and a NAD-malate dehydrogenase, is localized in the mitochondria of the bundle sheath cells and the following pathway for C4, acid decarboxylation has been proposed: aspartate → oxaloacetate → malate → CO2 + pyruvate. The present study reports that mitochondria isolated from the bundle sheath cells of one of these species, Atriplex spongiosa, are capable of decarboxylating C4, acids at rates between 5 and 8 μmol/min/mg chlorophyll. For maximum decarboxylating activities, these particles required aspartate, 2-oxoglutarate and phosphate as well as malate; in the absence of any one of these compounds, activity was reduced to 0.3–0.8 μmol/min/mg chlorophyll. Rates for C4 acid decarboxylation were much greater than the respiratory activities of these particles, including the capacity to form citrate or to oxidize malate, succinate, pyruvate or 2-oxoglutarate (0.03–0.6 μmol/min/mg chlorophyll). A comparison of mitochondria prepared from leaves of various C4, and C3, species showed that only the mitochondria from the bundle sheath cells of plants with high NAD-malic enzyme have capacities for rapid C4 acid decarboxylation. The effects of a variety of experimental conditions on C4 acid decarboxylating activities are also reported. The role of these mitochondria in C4 photosynthesis is discussed.  相似文献   

17.
C4 model plants composed of single-rooted Amarantus cruentusL. leaves were developed to study source-sink relationships.The photosynthetic activity of CO4 fixation in the rooted leavescultured under the control condition (10-h light/14-h darkness,730 µmol photons m–2s–1) remained constantand high. When the leaves kept for 8 or 9 d under the controlcondition were exposed to continuous light (CL) for 4 d, theactivity decreased steeply. The starch content increased significantlyduring the first 2 d in CL whereas the sucrose content increasedalmost linearly during the 4 d in CL. The close relationshipbetween the decrease in photosynthetic activity and the increasein sucrose indicates that the activity was subjected to feedbackinhibition when the end product was forced to accumulate inthe leaves. In the treated leaves, the initial activity of ribulose-1,5-bisphoshatecarboxylase decreased significantly. A large increase in ribulose-1,5-bisphosphateand decrease in 3-phosphoglycerate occurred following the deactivationin RuBPcase, which was fully restored by the preincubation withCO2 and Mg2+ and/or P1 and Mg2+. The activity of phosphoenolpyruvatecarboxylase also decreased but not as rapidly as RuBPcase. Thealanine and pyruvate levels decreased markedly but the oxaloacetate,glutamine and asparagine levels significantly increased whilephosphoenolpyruvate and glutamate were kept at almost constantlevels. The malate level first increased slightly and then decreasedsignificantly. The mechanism of coordinated decrease in carboxylationreactions between phtosynthetic carbon reduction cycle and C4metabolism in response to change in the source-sink balanceis discussed. (Received May 24, 1999; Accepted September 1, 1999)  相似文献   

18.
Control of C4 photosynthesis and Crassulacean acid metabolism (CAM) is, in part, mediated by the diel regulation of phosphoenolpyruvate carboxylase (PEPC) activity. The nature of this regulation of PEPC in the leaf cell cytoplasm of C4 and CAM plants is both metabolite-related and posttranslational. Specificially, the regulatory properties of the enzyme vary in accord with the physiological activity of C4 photosynthesis and CAM: PEPC is less sensitive to feedback inhibition by l-malate under light (C4 plants) or at night (CAM plants) than in darkness (C4) or during the day (CAM). While the view that a light-induced change in the aggregation state of the holoenzyme is a general mechanism for the diel regulation of PEPC activity in CAM plants is currently in dispute, there is no supportive in vivo evidence for such a tetramer/dimer interconversion in C4 plants. In contrast, a wealth of in vitro and in vivo data has accumulated in support of the view that the reversible phosphorylation of a specific, N-terminal regulatory serine residue in PEPC (e.g. Ser-15 or Ser-8 in the maize or sorghum enzymes, respectively) plays a key, if not cardinal, role in the posttranslational regulation of the carboxylase by light/dark or day/night transitions in both C4 and CAM plants, respectively.  相似文献   

19.
1. NADP-malate dehydrogenase and ;malic' enzyme in maize leaf extracts were separated from NAD-malate dehydrogenase and their properties were examined. 2. The NADP-malate dehydrogenase was nicotinamide nucleotide-specific but otherwise catalysed a reaction comparable with that with the NAD-specific enzyme. By contrast with the latter enzyme, a thiol was absolutely essential for maintaining the activity of the NADP-malate dehydrogenase, and the initial velocity in the direction of malate formation, relative to the reverse direction, was faster. 3. For the ;malic' enzyme reaction the K(m) for malate was dependent on pH and the pH optimum varied with the malate concentration. At their respective optimum concentrations the maximum velocity for this enzyme was higher with Mg(2+) than with Mn(2+). 4. The NADP-malate dehydrogenase in green leaves was rapidly inactivated in the dark and was reactivated when plants were illuminated. Reactivation of the enzyme extracted from darkened leaves was achieved simply by adding a thiol compound. 5. The activity of both enzymes was low in etiolated leaves of maize plants grown in the dark but increased 10-20-fold, together with chlorophyll, when leaves were illuminated. 6. The activity of these enzymes in different species with the C(4)-dicarboxylic acid pathway was compared and their possible role in photosynthesis was considered.  相似文献   

20.
The effects of synthetic preparations exhibiting cytokinin-like activity (6-benzylaminopurine, Thidiazuron, and kartolin-2) on the specific leaf area (SLA) were studied in plants of the family Gramineae (wheat, Triticum aestivum L.; meadow fescue, Festuca pratensis Huds.; and reed fescue, F. arindinacea Schreb.). At the early stages of ontogeny (until the leaf area reached 50-60% of the maximum value), treatment of plants of the three species with cytokinin-like preparations caused an increase in SLA. The SLA value in these plants was correlated with the rate of photosynthetic assimilation of carbon dioxide and activities of carbon metabolism enzymes: ribulose-1,5-bisphosphate carboxylase/oxygenase (EC 4.1.1.39), NAD-malate dehydrogenase (EC 1.1.1.37), and NADP-glyceraldehydrophosphate dehydrogenase complex, which includes phosphoglycerate kinase (EC 2.7.2.3) and glyceraldehydrophosphate dehydrogenase (EC 1.2.1.13). However, there was no correlation of SLA with the activity of phospho(enol)pyruvate carboxylase (EC 4.1.1.31), an anaplerotic carboxylation enzyme of grasses. SLA is suggested to reflect the state and activity of the photosynthetic apparatus and can be recommended as a characteristic of photosynthesis variability (e.g., caused by cytokinin-like preparations).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号