首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 106 毫秒
1.
在鲫鱼视网膜上考察了明、暗适应两种状态下视网膜细胞的NADPH黄递酶染色的不同.在暗适应5h的视网膜中,视杆和视锥的内段、部分水平细胞呈深度染色.部分无长突细胞和神经节细胞也有染色.此外,Muller细胞对NADPH黄递酶染色是强阳性.在明适应的视网膜中,光感受器的内段、神经节细胞的染色则较浅,而Muller细胞和水平细胞则呈阴性反应.此外,视杆去极化型双极细胞则清楚地被染色.无长突细胞在两种状态下的染色没有显著差异.Muller细胞,部分水平细胞和视杆去极化型双极细胞中存在诱导型一氧化氮合成酶,其诱导与否取决于视网膜的适应状态.  相似文献   

2.
Du WD  Bao YD 《生理学报》1999,51(3):279-283
本文应用neo-Timm染色法,观察了鲫鱼视网膜内锌离子的分布情况以及明,暗适应条件下鲫鱼视网膜内锌离子分布的变化。结果发现,明适应条件下,外网层、部分光感受器、双极细胞、无长突细胞以及神经节细胞胞体锌离子着色明显,含锌光感受器和双极细胞的突起伸入外网层,暗适应条件下,外网层锌离子染色减弱或消失(P〈0.01)。外核层胞体锌离子染色阴性,少数散在分布的视锥细胞呈锌离子阳性,上述资料提示,明适应条件  相似文献   

3.
Xu XM  Yang XL 《生理学报》1999,(2):121-127
本工作在分离灌流的鲫鱼视网膜上研究了甘氨酸对明,暗视视网膜电图(ERG)b-波和胞内记录的ON型双极细胞反应的作用。结果表明,甘氨酸能明显压抑ERG b-波和ON型双极细胞的反应,其作用能为士的宁所翻转;甘氨酸对用谷氨酸分离的ERG PⅢ成分(光感受器电位)无明显影响。这些结果提示,甘氨酸可能直接作用于双极细胞的受体,从而调节视网膜ON通路的活动。  相似文献   

4.
目的探讨脑红蛋白(NGB)在家兔视网膜的分布特征。方法选择健康成年家兔5只,利用免疫组织化学染色SP法,观察NGB在家兔视网膜中的分布情况。结果 NGB在家兔视网膜的视神经纤维层、节细胞层、内网状层、外网状层、光感受器内节段和色素上皮层中有强阳性表达,在视网膜的内核层有弱阳性表达,在视网膜的外核层和光感受器外节段中未见有阳性表达,内界膜、外界膜和视神经中亦发现有NGB阳性表达。家兔视网膜NGB阳性表达的细胞类型主要有节细胞、双极细胞和光感受器细胞,其中节细胞的阳性表达定位于细胞质,胞核中未见表达。结论除外核层和光感受器外节段外,NGB在家兔视网膜其它各层中均有表达,提示NGB在维持视网膜氧代谢平衡中发挥着重要作用。  相似文献   

5.
用免疫组织化学方法研究RCS大鼠(Royal College of Surgeon's rat,RCS rat)视网膜变性过程中早、中、晚期二级神经元形态的变化。结果发现,P1MRCS大鼠各二级神经元未见明显的形态改变。P2M RCS大鼠视网膜外核层萎缩约85%,视杆双极细胞顶端树突萎缩;水平细胞的树突与轴突在外网状层的分层未见改变。P3M RCS大鼠视网膜外核层萎缩近95%,RCS大鼠视杆双极细胞顶端萌生新的神经突起;水平细胞的树突分支明显丢失,轴突在外网状层的分层发生改变,出现新生神经突起;无长突细胞的树突在内网状层的分层至变性晚期也未见改变。该研究表明RCS大鼠视网膜二级神经元形态的改变是继发性改变,是感光细胞变性后对传入缺失的一种反应,即重构反应。在进行视网膜功能救治时需要考虑重构反应带来的影响。  相似文献   

6.
Wu D  Zhu PH 《生理科学进展》1998,29(4):349-351
脊椎动物视网膜双极细胞有ON型和OFF型两类:ON型双极细胞对光反应为去极化,OFF型双极细胞对光反应为超极化。现知,ON型双极细胞上含有代谢型谷氨酸受体,暗中光感受器细胞持续释放的谷所酸与之结合后,造成阳离子通道关闭,引起细胞超极化;光照时谷氨酸释放减少,引起去极化。而OFF型双极细胞上含有离子型谷氨酸受体,谷氨酸与之结合后受体本身通道打开,引起细胞去极化;光照时,谷氨酸释放减少,引起超极化。  相似文献   

7.
半滑舌鳎仔、稚鱼视网膜结构与视觉特性   总被引:3,自引:0,他引:3  
对1-50d半滑舌鳎仔、稚鱼视网膜和全长50mm的半滑舌鳎幼鱼视网膜结构和视觉特性进行了研究。结果表明:(1)3d仔鱼色素层形成,15d仔鱼没有显著的视网膜运动反应,25d时具有正常感受自然光的明视功能,43d半滑舌鳎稚鱼适应自然光的功能丧失;(2)半滑舌鳎仔鱼阶段感受细胞主要为高密度的单锥,视杆细胞和双锥细胞出现的较晚;单锥融合成双锥时,由于半滑舌鳎视锥细胞椭圆体细长,融合程度较差,尽管在视网膜横切面上能够看到双锥,但在切向切面上仍呈现单锥排列方式;随其生长发育,视锥和神经节细胞密度降低,视杆细胞密度增加,31d后视杆细胞数量显著增加;同时,外核层细胞核与神经节细胞的比值增大,网络会聚程度提高;相关数据表明,20-31d是视网膜结构和视觉特性发生明显变化的过渡时期,这是与半滑舌鳎从浮游生活到底栖生活生态环境的变化相适应的;(3)半滑舌鳎内核层结构特殊,50mm时只有1层水平细胞,属感光系统不发达类型,双极细胞和无长突细胞共4-5层,但不可分辨;内核层细胞层数的减少,基本上没有分化的水平细胞、双极细胞和无长突细胞,说明半滑舌鳎视网膜的光敏感性不高;(4)半滑舌鳎仔鱼浮游生活阶段视敏度较高,视觉在捕食行为中具有重要意义;底栖生活后,视敏度和光敏感性都较差,视觉在捕食行为中不可能具有重要作用  相似文献   

8.
本文采用S-100蛋白免疫组化染色结合ACP组化染色(或lysozyme免疫组化染色)来进一步观察大鼠脾树状突细胞(DCs)和巨噬细胞(Mφs)的染色反应性。结果表明,脾悬液淋巴树状突细胞(LDCs)呈S-100蛋白阳性反应而ACP反应为阴性或弱阳性,Mφs则呈ACP强阳性反应而S-100蛋白反应为阴性;同一涂片S-100蛋白和ACP双染结果,两者不重叠。脾冰冻切片显示交错突细胞(IDCs)和滤泡树状突细胞(FCDs)呈S-100蛋白阳性反应而ACP反应为阴性或弱阳性,Mφs则反之,即ACP反应强阳性而S-100蛋白为阴性反应;同一切片S-100蛋白和ACP双染也无重叠。腹腔Mφs贴片对照染色,Mφs呈ACP强阳性反应而S-100蛋白反应为阴性。由此进一步证实在一定条件下S—100蛋白可作为鉴别DCs和Mφs的标志。  相似文献   

9.
移植视网膜NOS阳性神经元的发育   总被引:2,自引:1,他引:1  
目的 观察不同年龄组段大鼠正常视网膜及移植视网膜内NOS阳性神经元的发育情况及其定位分布。方法 实验分正常视网膜发育组和移植视网膜发育组,应用还原型烟酰胺腺嘌呤二核苷酸磷酸(NADPH)组织化学方法显示。结果 1、NOS阳性神经元最早出现于生后第五天(P5),P18时阳性神经元数目达到最高峰,2、移植视网膜具有正常视网膜的各层结构和相似的生长规律,NOS阳性神经元在生后第4天移植视网膜(TP4)中出现,TP12数量达到高峰值,TP22后降至正常成年鼠水平。结论 根据NOS阳性神经元的定位,分布,推测其为无长突细胞,移位无长突细胞及节细胞。  相似文献   

10.
在离体灌流的鲫鱼视网膜上 ,应用细胞内记录技术考察了γ 氨基丁酸 (γ aminobutyricacid ,GABA)对无长突细胞持续性和瞬变性给光反应的调制作用 .实验表明 ,外源性GABA部分压抑ON型无长突细胞的持续性反应 ,该作用可完全被氯离子通道阻断剂印防己毒素 (picrotoxin ,PTX)和GABAA 受体的特异性拮抗剂荷包牡丹碱 (bicuculline ,BCC)所阻遏 .但在ON反应由视杆信号驱动的ON OFF型无长突细胞 ,GABA对其瞬变性ON反应的压抑不能为BCC所阻遏 ,但可被PTX所翻转 .这些结果提示 ,在鲫鱼内层视网膜 ,GABAA 和GABAC受体分别介导GABA对持续性和瞬变性给光反应的调制 .  相似文献   

11.
The carp retina was examined by NADPH diaphorase histochemistry to determine if the staining pattern of retinal cells was changed depending on the adaptation state of the retina. When dark-adapted for 5 h, ellipsoids of inner segments of both rods and cones and some horizontal cells were heavily stained. Staining was also found in subpopulations of amacrine cells and ganglion cells. In addition, Muller cells were strongly positive for NADPH diaphorase. When light-adapted for 5h, ellipsoids of photoreceptors and ganglion cells were less intensely stained, whereas Muller cells and horizontal cells became negative for NADPH diaphorase. Furthermore, rod ON-center bipolar cells were clearly stained. The difference of staining of amacrine cells between dark- and light-adapted retinas was not significant. The differences in diaphorase-staining pattern between dark- and light-adapted retinas suggest that Muller cells, some horizontal cells and rod ON-center bipolar cells contain inducible nitric oxide synthase,  相似文献   

12.
The vertebrate retina is a “genuine neural center” (Ramón y Cajal), in which glutamate is a major excitatory neurotransmitter. Both N-methyl-d-aspartate (NMDA) and non-NMDA receptors are expressed in the retina. Although non-NMDA receptors and/or metabotropic glutamate receptors are generally thought to be responsible for mediating the transfer of visual signals in the outer retina, there is recent evidence suggesting that NMDA receptors are also expressed in photoreceptors, as well as horizontal and bipolar cells. In the inner retina, NMDA receptors, in addition to other glutamate receptor subtypes, are abundantly expressed to mediate visual signal transmission from bipolar cells to amacrine and ganglion cells, and could be involved in modulation of inhibitory feedback from amacrine cells to bipolar cells. NMDA receptors are extrasynaptically expressed in ganglion cells (and probably amacrine cells) and may play physiological roles in a special mode. Activity of NMDA receptors may be modulated by neuromodulators, such as d-serine and others. This article discusses retinal excitotoxicity mediated by NMDA receptors.  相似文献   

13.
In this study we have localized glutamate (GLU) in fetal (14–25 weeks gestation, Wg) human retinas by immunohistochemistry. At 14 Wg, GLU-immunoreactivity (IR) was localized only in the central part of retina, showing a prominently labelled nerve fiber layero A few ganglion cells and displaced amacrine cells were very weakly labelled. At 17 Wg, GLU was localized conspicuously in many ganglion cells, displaced amacrine cells, some amacrine cells and the prospective photoreceptor cell bodies in the neuroepithelial layero With progressive development at 20 and 25 Wg, the IR for GLU was found additionally in the Müller cell endfeet, some bipolar cells as well as in the horizontal cells that were aligned in a row along the outer border of the inner nuclear layer of the central retinao The photoreceptor cell bodies in the outer nuclear layer were also prominently immunopositive for GLU. The developmental distribution of GLU in the human retina tends to indicate that it plays an important role in the differentiation and maturation of retinal neurons.  相似文献   

14.
15.
Seki T  Shioda S  Izumi S  Arimura A  Koide R 《Peptides》2000,21(1):109-113
The distribution and localization of pituitary adenylate cyclase-activating polypeptide (PACAP) in the rat retina were studied by immunocytochemistry with both light and electron microscopy. PACAP-like immunoreactivity (PACAP-LI) was detected in the amacrine and horizontal cells as well as in the inner plexiform layer, the ganglion cell layer and the nerve fiber layer. PACAP-LI seemed to be concentrated predominantly in the neuronal perikarya and their processes, but not in other cells in the retina. At the ultrastructural level, PACAP-LI was visible in the plasma membranes, rough endoplasmic reticulum, and cytoplasmic matrix in the PACAP-positive neurons in the inner nuclear layer. In the inner plexiform layer, PACAP-positive amacrine cell processes made synaptic contact with immunonegative amacrine cell processes, bipolar cell processes, and ganglion cell terminals. These findings suggest that PACAP may function as a neurotransmitter and/or neuromodulator.  相似文献   

16.
Immunocytochemical methods with an antiserum against neuronal nitric oxide synthase (NOS) were applied to identify the morphology and synaptic connectivity of NOS-like immunoreactive neurons in the guinea pig retina. In the present study, two types of amacrine cells were labeled with anti-NOS antisera. Type 1 cells had large somata located in the inner nuclear layer (INL) with long, sparsely branched processes ramifying mainly in stratum 3 of the inner plexiform layer (IPL). The somata of type 2 cells (smaller diameters) were located in the INL. Some displaced amacrine cells in the ganglion cell layer were labeled. The soma size of the displaced amacrine cells was similar to that of the type 2 amacrine cells. However, processes originating from type 2 amacrine cells and displaced amacrine cells stratified mainly in strata 1 and 5, respectively. Some cone bipolar cells were weakly NOS-immunoreactive. The synaptic connectivity of NOS-like immunoreactive amacrine cells was identified in the IPL by electron microscopy. NOS-labeled amacrine cell processes received synaptic input from other amacrine cell processes and bipolar cell axon terminals in all strata of the IPL. The most frequent postsynaptic targets of NOS-immunoreactive amacrine cells were other amacrine cell processes. Cone bipolar cells were postsynaptic to NOS-labeled amacrine cells in all strata of the IPL. Labeled amacrine cells synapsing onto ganglion cells were found only in sublamina b. A few synaptic contacts were observed between labeled cell processes. In the outer plexiform layer, dendrites of labeled bipolar cells made basal contact with cone pedicles or formed a synaptic triad opposed to a synaptic ribbon of cone pedicles.  相似文献   

17.
Target cells of vitamin D in the vertebrate retina   总被引:1,自引:0,他引:1  
Using PAP technique, cellular localization of vitamin D-dependent calcium-binding protein (D-CaBP) was investigated in vertebrate retina with monospecific antisera against chick duodenal D-CaBP. In the chick retina, the receptor cells were positive. In the inner nuclear layer, horizontal cells and some bipolar cells were also positive. Some amacrine cells as well as different levels of the inner plexiform layer were also positive for D-CaBP. A few interspersed ganglion cells were positive but their axons forming the optic tract were negative. Müller's cells were negative. In 1-day-old chicks and 4-week-old rachitic chicks there was paucity and absence, respectively, of D-CaBP staining in horizontal cells. In the mouse, rat, and rabbit the receptors had only trace amounts of reaction product in their outer segment and pedicle. Horizontal cells were densely positive throughout their cellular body and processes. Some amacrine cells in the inner nuclear layer were positive. In the mouse and rat three horizontal levels of the outer plexiform layer were very prominent because of their dense staining for D-CaBP. Many ganglion cells were also positive along with their axons forming the optic nerve. In the rabbit, no positive layers were seen in the inner plexiform layer, and ganglion cells with their fibers were negative. In the frog retina there were smaller amounts of D-CaBP in the receptor cells and horizontal cells than that of the chick retina. Also, the fibers of the ganglionic cells were positive for D-CaBP. In all species studied, some amacrine cells were stained for D-CaBP. Because of its possible roles in membrane calcium transport and intracellular Ca++ regulation, it has perhaps similar functions in these positive cells. The synthesis of D-CaBP is dependent upon vitamin D. These positive cells are thus target cells of vitamin D.  相似文献   

18.
The structure of light- and dark-adapted retina of the black bass, Micropterus salmoides has been studied by light and electron microscopy. This retina lacks blood vessels at all levels. The optic fiber layer is divided into fascicles by the processes of Müller cells and the ganglion cell layer is represented by a single row of voluminous cells. The inner nuclear layer consists of two layers of horizontal cells and bipolar, amacrine and interplexiform cells. In the outer plexiform layer we observed the synaptic terminals of photoreceptor cells, rod spherules and cone pedicles and terminal processes of bipolar and horizontal cells. The spherules have a single synaptic ribbon and the pedicles possess multiple synaptic ribbons. Morphologically, we have identified three types of photoreceptors: rods, single cones and equal double cones which undergo retinomotor movements in response to changes in light conditions. The cones are arranged in a square mosaic whereas the rods are dispersed between the cones.  相似文献   

19.
GDNF and the GDNF receptors, c-Ret, GFR alpha 1 and 2 mRNA is expressed in the developing chicken retina. GDNF labelling was mainly found in embryonic day 4-5 retina but weak labelling could also be found over scattered retinal cells at later stages. c-ret labelling was found over ganglion cells, amacrine and horizontal cells; the preferred GDNF receptor (GFR alpha 1) over amacrine and horizontal cells; and the less preferred GDNF receptor (GFR alpha 2) over ganglion cells, amacrine cells and photoreceptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号