首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
Aquaporin 4 (AQP4) is a water transporting, transmembrane channel protein that has important regulatory roles in maintaining cellular water homeostasis. Several other AQP proteins exhibit calmodulin (CaM)-binding properties, and CaM has recently been implicated in the cell surface localization of AQP4. The objective of the present study was to assess the CaM-binding properties of AQP4 in detail. Inspection of AQP4 revealed two putative CaM-binding domains (CBDs) in the cytoplasmic N- and C-terminal regions, respectively. The Ca2+-dependent CaM-binding properties of AQP4 CBD peptides were assessed using fluorescence spectroscopy, isothermal titration calorimetry, and two-dimensional 1H, 15N-HSQC NMR with 15N-labeled CaM. The N-terminal CBD of AQP4 predominantly interacted with the N-lobe of CaM with a 1:1 binding ratio and a Kd of 3.4 μM. The C-terminal AQP4 peptide interacted with both the C- and N-lobes of CaM (2:1 binding ratio; Kd1: 3.6 μM, Kd2: 113.6 μM, respectively). A recombinant AQP4 protein domain (recAQP4CT, containing the entire cytosolic C-terminal sequence) bound CaM in a 1:1 binding mode with a Kd of 6.1 μM. A ternary bridging complex could be generated with the N- and C-lobes of CaM interacting simultaneously with the N- and C-terminal CBD peptides. These data support a unique adapter protein binding mode for CaM with AQP4.  相似文献   

2.
Peptide aptamers are simple structures, often made up of a single-variable peptide loop constrained within a constant scaffold protein. Aptamers were rationally designed by inserting peptides into a solvent-exposed loop on thioredoxin (Trx). They were designed to interact with the proteins elongation initiation factor 4E (eIF4E) and mouse double minute 2 (MDM2) and were then validated by competitive fluorescence anisotropy experiments. The constructed aptamers interacted with eIF4E and MDM2 with apparent Kd values of 1.25 ± 0.06 μM and 0.09 ± 0.01 μM, respectively, as determined by isothermal titration calorimetry (ITC). The MDM2 aptamer (SuperTIP) interacted ∼ 2-fold more tightly with MDM2 than the free linear peptide (12.1 peptide), while the eIF4E aptamer elongation initiation factor 4GI-SG interacted ∼ 5-fold less strongly than the free linear peptide (elongation initiation factor 4GI). These differences in binding with respect to each aptamer's free peptide reveal that there are more factors involved than just constraining a peptide in a scaffold that lead to tighter binding. ITC studies of aptamer interactions reveal an enthalpic component more favorable than that for the free linear peptides, as well as a larger unfavorable entropic component. These results indicated that stapling of the free peptide in the scaffold increases the favorable enthalpy of the interaction with the target protein. Thermostability studies also revealed that peptide insertion significantly destabilized the Trx scaffold by ∼ 27 °C. It is this destabilization that leads to an increase in the flexibility of the Trx scaffold, which presumably is lost upon the aptamer's interaction with the target protein and is the cause of the increase in unfavorable entropy in the ITC studies. The precise origin of the enthalpic effect was further studied using molecular dynamics for the MDM2-SuperTIP system, which revealed that there were also favorable electrostatic interactions between the Trx scaffold and the MDM2 protein itself, as well as with the inserted peptide. This work reveals that any increase in the binding affinity of an aptamer over a free peptide is dependent on the increase in the favorable enthalpy of binding, which is ideally caused by stapling of the peptide or by additional interactions between the aptamer protein and its target. These need to be sufficient to compensate for the destabilization of the scaffold by peptide insertion. These observations will be useful in future aptamer designs.  相似文献   

3.
Calmodulin (CaM) is a multifunctional messenger protein that activates a wide variety of signaling pathways in eukaryotic cells in a calcium-dependent manner. CaM has been proposed to be functionally distinct from the S100 proteins, a related family of eukaryotic calcium-binding proteins. Previously, it was demonstrated that peptides derived from the actin-capping protein, TRTK12, and the tumor-suppressor protein, p53, interact with multiple members of the S100 proteins. To test the specificity of these peptides, they were screened using isothermal titration calorimetry against 16 members of the human S100 protein family, as well as CaM, which served as a negative control. Interestingly, both the TRTK12 and p53 peptides were found to interact with CaM. These interactions were further confirmed by both fluorescence and nuclear magnetic resonance spectroscopies. These peptides have distinct sequences from the known CaM target sequences. The TRTK12 peptide was found to independently interact with both CaM domains and bind with a stoichiometry of 2:1 and dissociations constants Kd,C-term = 2 ± 1 µM and Kd,N-term = 14 ± 1 µM. In contrast, the p53 peptide was found to interact only with the C-terminal domain of CaM, Kd,C-term =2 ± 1 µM, 25°C. Using NMR spectroscopy, the locations of the peptide binding sites were mapped onto the structure of CaM. The binding sites for both peptides were found to overlap with the binding interface for previously identified targets on both domains of CaM. This study demonstrates the plasticity of CaM in target binding and may suggest a possible overlap in target specificity between CaM and the S100 proteins.  相似文献   

4.
Two new xanthones identified as 15-chlorotajixanthone hydrate (1) and 14-methoxytajixanthone (2) were isolated from an Emericella sp. strain 25379 along with shamixanthone (3) and tajixanthone hydrate (4). The stereostructures of 1 and 2 were elucidated by spectroscopic and molecular modeling methods. The absolute configuration at the stereogenic centers of 1 was established according to CD measurements. In the case of 2, however, the absolute configuration at C-20 and C-25 was designated as S and R, respectively, by Mosher ester methodology. Thereafter, the configuration at C-14 and C-15 of 2 was established as S and S, respectively by comparing the optical rotation and 1H–1H coupling constant experimental values with those obtained through molecular modeling calculations at DFT B3LYP/DGDZVP level of theory for diasteroisomers 2a2d. The activation of the calmodulin-sensitive cAMP phosphodiesterase (PDE1) was inhibited in the presence of 14 in a concentration-dependent manner. The effect of compounds 2 (IC50 = 5.54 μM) and 4 (IC50 = 5.62 μM) was comparable with that of chlorpromazine (CPZ; IC50 = 7.26 μM), a well known CaM inhibitor used as a positive control. The inhibition mechanism of both compounds was competitive with respect to CaM according to a kinetic study. A docking analysis with 2 and 4 using the AutoDock 4.0 program revealed that they interacted with CaM in the same pocket as trifluoropiperazine (TFP).  相似文献   

5.

Objectives

We examined the importance of aptamer usage under the same condition as the selection process by employing the previously selected aptamers for calmodulin (CaM) which includes a non-natural fluorogenic amino acid, 7-nitro-2,1,3-benzoxadiazole.

Results

We added five amino acids at the N-terminus which was employed for the selection and then we tested the affinity and selectivity for CaM binding. Surface plasmon resonance and fluorescence measurements showed that the additional amino acids for one of the aptamers drastically improved binding affinity to CaM, indicating the importance of aptamer use under the same conditions as the selection process. Such drastic improvement in affinity was not observed for the sequence which had been reported previously. Nuclear magnetic resonance data identified that the primary binding site is located in a C-terminal of CaM and the additional residues enhance interactions with CaM.

Conclusions

We found that the addition of the common sequence, which was employed for ribosome display, makes the affinity of a selected peptide as strong as the previously reported peptide.
  相似文献   

6.
We have shown previously that the Ca2+-dependent inhibition of lens epithelial cell-to-cell communication is mediated in part by the direct association of calmodulin (CaM) with connexin43 (Cx43), the major connexin in these cells. We now show that elevation of [Ca2+]i in HeLa cells transfected with the lens fiber cell gap junction protein sheep Cx44 also results in the inhibition of cell-to-cell dye transfer. A peptide comprising the putative CaM binding domain (aa 129-150) of the intracellular loop region of this connexin exhibited a high affinity, stoichiometric interaction with Ca2+-CaM. NMR studies indicate that the binding of Cx44 peptide to CaM reflects a classical embracing mode of interaction. The interaction is an exothermic event that is both enthalpically and entropically driven in which electrostatic interactions play an important role. The binding of the Cx44 peptide to CaM increases the CaM intradomain cooperativity and enhances the Ca2+-binding affinities of the C-domain of CaM more than twofold by slowing the rate of Ca2+ release from the complex. Our data suggest a common mechanism by which the Ca2+-dependent inhibition of the α-class of gap junction proteins is mediated by the direct association of an intracellular loop region of these proteins with Ca2+-CaM.  相似文献   

7.
There is a constant need to identify novel inhibitors to combat β-lactamase-mediated antibiotic resistance. In this study, we identify three penicillinase-binding peptides, P1 (DHIHRSYRGEFD), P2 (NIYTTPWGSNWS), and P3 (SHSLPASADLRR), using a phage display library. Surface plasmon resonance (SPR) is utilized for quantitative determination and comparison of the binding specificity of selected peptides to penicillinase. An SPR biosensor functionalized with P3-GGGC (SHSLPASADLRRGGGC) is developed for detection of penicillinase with excellent sensitivity (15.8 RU nM−1) and binding affinity (KD = 0.56 nM). To determine if peptides can be good inhibitors for penicillinase, these peptides are mixed with penicillinase and their inhibition efficiency is determined by measuring the hydrolysis of substrate penicillin G using UV–vis spectrophotometry. Peptide P2 (NIYTTPWGSNWS) is found to be a promising penicillinase inhibitor with a Ki of 9.22 μM and a Ki′ of 33.12 μM, suggesting that the inhibition mechanism is a mixed pattern. This peptide inhibitor (P2) can be used as a lead compound to identify more potent small molecule inhibitors for penicillinase. This study offers a potential approach to both detection of β-lactamases and development of novel inhibitors of β-lactamases.  相似文献   

8.
We developed a method for aptamer identification without in vitro selection. We have previously obtained several aptamers, which may fold into the G-quadruplex (G4) structure, against target proteins; therefore, we hypothesized that the G4 structure would be an excellent scaffold for aptamers to recognize the target protein. Moreover, the G4-forming sequence contained in the promoter region of insulin can reportedly bind to insulin. We thus expected that G4 DNAs, which are contained in promoter regions, could act as DNA aptamers against their gene products. We designated this aptamer identification method as “G4 promoter-derived aptamer selection (G4PAS).” Using G4PAS, we identified vascular endothelial growth factor (VEGF)165, platelet-derived growth factor-AA (PDGF)-AA, and RB1 DNA aptamers. Surface plasmon resonance (SPR) analysis revealed that the dissociation constant (K d) values of VEGF165, PDGF-AA, and RB1 DNA aptamers were 1.7 × 10−7 M, 6.3 × 10−9 M, and 4.4 × 10−7 M, respectively. G4PAS is a simple and rapid method of aptamer identification because it involves only binding analysis of G4 DNAs to the target protein. In the human genome, over 40% of promoters contain one or more potential G4 DNAs. G4PAS could therefore be applied to identify aptamers against target proteins that contain G4 DNAs on their promoters.  相似文献   

9.
Src kinase activity is regulated by the interaction of SH3 domain with protein sequences that are rich in proline residues. Identification of more potent SH3 domain binding ligands that can regulate Src kinase activity is a subject of major interest. Conformationally constrained peptides have been previously used for improving the binding potency of the Src SH2 domain binding peptide ligands and peptide substrates of the substrate-binding site of Src. A series of peptide analogues of Ac-VSLARRPLPPLP (1, Ac-VSL12, Kd = 0.34 μM) were synthesized by introducing conformational constraints to improve the binding affinity towards the Src SH3 domain. Peptides synthesized through cyclization between N-terminal to C-terminal [VSLARRPLPPLP] or N-terminal to side chain flanking residues (i.e., [βAVS]LARRPLPPLP and [VSLE]RRPLPPLP) exhibited at least 6.4-fold less binding affinity (Kd = 2.19–4.85 μM) when compared to 1. The data suggest upon N-terminal cyclization with C-terminal or flanking residues, the interactions of the amino acids in the core RPLPPLP reduce significantly with the residues within the Src SH3 domain. Conformationally constrained peptide V[SLARRPLPPLP] (5) was synthesized through cyclization of C-terminal to the serine side chain and displayed a comparable binding affinity (Kd = 0.35 μM) towards the Src SH3 domain versus that of 1. Thus, this template may be used to optimize and generate more potent analogues with higher stability.  相似文献   

10.
The stability of aptamer–ligand complexes is probed in nanopore-based dynamic force spectroscopy experiments. Specifically, the ATP-binding aptamer is investigated using a backward translocation technique, in which the molecules are initially pulled through an α-hemolysin nanopore from the cis to the trans side of a lipid bilayer membrane, allowed to refold and interact with their target, and then translocated back in the transcis direction. From these experiments, the distribution of bound and unbound complexes is determined, which in turn allows determination of the dissociation constant Kd ≈ 0.1 mM of the aptamer and of voltage-dependent unfolding rates. The experiments also reveal differences in binding of the aptamer to AMP, ADP, or ATP ligands. Investigation of an aptamer variant with a stabilized ATP-binding site indicates fast conformational switching of the original aptamer before ATP binding. Nanopore force spectroscopy is also used to study binding of the thrombin-binding aptamer to its target. To detect aptamer–target interactions in this case, the stability of the ligand-free aptamer—containing G-quadruplexes—is tuned via the potassium content of the buffer. Although the presence of thrombin was detected, limitations of the method for aptamers with strong secondary structures and complexes with nanomolar Kd were identified.  相似文献   

11.
The alkene peptide isostere for the d-Ala-d-Ala dipeptide was synthesized via a convergent approach utilizing olefin cross-metathesis. The new isostere was then evaluated for binding to the last resort antibiotic, vancomycin. The alkene isostere exhibited a KD = 90 μM in comparison to the native peptide (KD = 2.3 μM) and Lac mutant (KD = 2300 μM). This study demonstrates that loss of binding in vancomycin resistant strains as a result of a d-Ala to d-Lac mutation is from both the loss of a crucial hydrogen bond and introduction of a repulsive lone pair interaction.  相似文献   

12.
The interaction of calmodulin (CaM) with the receptor for retinol uptake, STRA6, involves an α-helix termed BP2 that is located on the intracellular side of this homodimeric transporter (Chen et al., 2016 [1]). In the absence of Ca2+, NMR data showed that a peptide derived from BP2 bound to the C-terminal lobe (C-lobe) of Mg2+-bound CaM (MgCaM). Upon titration of Ca2+ into MgCaM-BP2, NMR chemical shift perturbations (CSPs) were observed for residues in the C-lobe, including those in the EF-hand Ca2+-binding domains, EF3 and EF4 (CaKD = 60 ± 7 nM). As higher concentrations of free Ca2+ were achieved, CSPs occurred for residues in the N-terminal lobe (N-lobe) including those in EF1 and EF2 (CaKD = 1000 ± 160 nM). Thermodynamic and kinetic Ca2+ binding studies showed that BP2 addition increased the Ca2+-binding affinity of CaM and slowed its Ca2+ dissociation rates (koff) in both the C- and N-lobe EF-hand domains, respectively. These data are consistent with BP2 binding to the C-lobe of CaM at low free Ca2+ concentrations (<100 nM) like those found at resting intracellular levels. As free Ca2+ levels approach 1000 nM, which is typical inside a cell upon an intracellular Ca2+-signaling event, BP2 is shown here to interact with both the N- and C-lobes of Ca2+-loaded CaM (CaCaM-BP2). Because this structural rearrangement observed for the CaCaM-BP2 complex occurs as intracellular free Ca2+ concentrations approach those typical of a Ca2+-signaling event (CaKD = 1000 ± 160 nM), this conformational change could be relevant to vitamin A transport by full-length CaCaM-STRA6.  相似文献   

13.
Calmodulin (CaM) is an essential eukaryotic calcium receptor that regulates many kinases, including CaMKII. Calcium‐depleted CaM does not bind to CaMKII under physiological conditions. However, binding of (Ca2+)4‐CaM to a basic amphipathic helix in CaMKII releases auto‐inhibition of the kinase. The crystal structure of CaM bound to CaMKIIp, a peptide representing the CaM‐binding domain (CaMBD) of CaMKII, shows an antiparallel interface: the C‐domain of CaM primarily contacts the N‐terminal half of the CaMBD. The two domains of calcium‐saturated CaM are believed to play distinct roles in releasing auto‐inhibition. To investigate the underlying mechanism of activation, calcium‐dependent titrations of isolated domains of CaM binding to CaMKIIp were monitored using fluorescence anisotropy. The binding affinity of CaMKIIp for the domains of CaM increased upon saturation with calcium, with the C‐domain having a 35‐fold greater affinity than the N‐domain. Because the interdomain linker of CaM regulates calcium‐binding affinity and contribute to conformational change, the role of each CaM domain was explored further by investigating effects of CaMKIIp on site‐knockout mutants affecting the calcium‐binding sites of a single domain. Investigation of the thermodynamic linkage between saturation of individual calcium‐binding sites and CaM‐domain binding to CaMKIIp showed that calcium binding to Sites III and IV was sufficient to recapitulate the behavior of (Ca2+)4‐CaM. The magnitude of favorable interdomain cooperativity varied depending on which of the four calcium‐binding sites were mutated, emphasizing differential regulatory roles for the domains of CaM, despite the high degree of homology among the four EF‐hands of CaM. Proteins 2009. © 2008 Wiley‐Liss, Inc.  相似文献   

14.
Mycosin protease-1 (MycP1) cleaves ESX secretion-associated protein B (EspB) that is a virulence factor of Mycobacterium tuberculosis, and accommodates an octapeptide, AVKAASLG, as a short peptide substrate. Because peptidoboronic acids are known inhibitors of serine proteases, the synthesis and binding of a boronic acid analog of the pentapeptide cleavage product, AVKAA, was studied using MycP1 variants from Mycobacterium thermoresistible (MycP1mth), Mycobacterium smegmatis (MycP1msm) and M. tuberculosis (MycP1mtu). We synthesized the boropentapeptide, HAlaValLysAlaAlaB(OH)2 (1) and the analogous pinanediol PD-protected HAlaValLysAlaAlaBO2(PD) (2) using an Fmoc/Boc peptide strategy. The pinanediol boropentapeptide 2 displayed IC50 values 121.6 ± 25.3 μM for MycP1mth, 93.2 ± 37.3 μM for MycP1msm and 37.9 ± 5.2 μM for MycP1mtu. Such relatively strong binding creates a chance for crystalizing the complex with 2 and finding the structure of the unknown MycP1 catalytic site that would potentially facilitate the development of new anti-tuberculosis drugs.  相似文献   

15.
Microbial milk-clotting enzymes are valued as calf rennet substitutes in the cheese industry. Aspergillus oryzae MTCC 5341 was identified to produce the highest milk-clotting activity during screening of 16 fungal strains. Solid state fermentation using wheat bran along with 4% defatted soy flour and 2% skim milk powder as substrate was optimal for growth of A. oryzae and production of the enzyme. Nearly 40,000 U/g bran of milk-clotting activity was present at the end of 120 h. The enzyme could be recovered by percolating the bran with 0.1 M sodium chloride for 60 min at 4°C. The decolorized enzyme preparation had high ratio of milk clotting to proteolytic activity. Affinity precipitation with alginate and subsequent elution with 0.5 M sodium chloride containing 0.2 M CaCl2 resulted in an enzyme preparation with specific activity of 3,500 U/mg and 72% yield. Optimum pH and temperature for activity of the enzyme were characterized as 6.3 and 55°C, respectively. Milk-clotting enzyme showed differential degree of hydrolysis on casein components. High ratio of milk clotting to proteolytic activity coupled with low thermal stability strengthens the potential usefulness of milk-clotting enzyme of A. oryzae MTCC 5341 as a substitute for calf rennet in cheese manufacturing.  相似文献   

16.
We investigated the effect of 2,6‐dimethoxy‐1,4‐benzoquinone (DMBQ) on induced resistance to Magnaporthe oryzae in rice. DMBQ concentrations greater than 50 μg/ml inhibited spore germination and appressorium formation in M. oryzae. When rice leaves pretreated with 10 μg/ml DMBQ, which did not show antifungal activity against spore germination and appressorium formation of M. oryzae, were inoculated with M. oryzae spores 5 days after DMBQ pretreatment, blast lesion formation was inhibited compared with control leaves pretreated with distilled water. In addition, infection‐inhibiting activity against M. oryzae was significantly enhanced in rice leaf sheaths pretreated with 10 μg/ml DMBQ. H2O2 generation was observed in rice leaves pretreated with DMBQ, and PAL, POX, CHS and PR10a were significantly expressed in these leaves. These results suggested that DMBQ can protect rice from blast disease caused by M. oryzae.  相似文献   

17.
The human immunodeficiency virus type 1 (HIV-1) integrase (IN) protein is an emerging target for the development of anti-HIV drugs. We recently described a new approach for inhibiting IN by “shiftides”—peptides that inhibit the protein by shifting its oligomerization equilibrium from the active dimer to the inactive tetramer. In this study, we used the yeast two-hybrid system with the HIV-1 IN as a bait and a combinatorial peptide aptamer library as a prey to select peptides of 20 amino acids that specifically bind IN. Five non-homologous peptides, designated as IN-1 to IN-5, were selected. ELISA studies confirmed that IN binds the free peptides. All the five peptides interact with IN with comparable affinity (Kd≈10 μM), as was revealed by fluorescence anisotropy studies. Only one peptide, IN-1, inhibited the enzymatic activity of IN in vitro and the HIV-1 replication in cultured cells. In correlation, fluorescence anisotropy binding experiments revealed that of the five peptides, only the inhibitory IN-1 inhibited the DNA binding of IN. Analytical gel filtration experiments revealed that only the IN-1 and not the four other peptides shifted the oligomerization equilibrium of IN towards the tetramer. Thus, the results show a distinct correlation between the ability of the selected peptides to inhibit IN activity and that to shift its oligomerization equilibrium.  相似文献   

18.
The commonly used beverage and psychostimulant caffeine is known to inhibit human acetylcholinesterase enzyme. This pharmacological activity of caffeine is partly responsible for its cognition enhancing properties. However, the exact mechanisms of its binding to human cholinesterases (acetyl and butyrylcholinesterase; hAChE and hBuChE) are not well known. In this study, we investigated the cholinesterase inhibition by the xanthine derivatives caffeine, pentoxifylline, and propentofylline. Among them, propentofylline was the most potent AChE inhibitor (hAChE IC50 = 6.40 μM). The hAChE inhibitory potency was of the order: caffeine (hAChE IC50 = 7.25 μM) < pentoxifylline (hAChE IC50 = 6.60 μM) ? propentofylline (hAChE IC50 = 6.40 μM). These compounds were less potent relative to the reference agent donepezil (hAChE IC50 = 0.04 μM). Moreover, they all exhibited selective inhibition of hAChE with no inhibition of hBuChE (IC50 > 50 μM) relative to the reference agent donepezil (hBuChE IC50 = 13.60 μM). Molecular modeling investigations indicate that caffeine binds primarily in the catalytic site (Ser203, Glu334 and His447) region of hAChE whereas pentoxifylline and propentofylline are able to bind to both the catalytic site and peripheral anionic site due to their increased bulk/size, thereby exhibiting superior AChE inhibition relative to caffeine. In contrast, their lack of hBuChE inhibition is due to a larger binding site and lack of key aromatic amino acids. In summary, our study has important implications in the development of novel caffeine derivatives as selective AChE inhibitors with potential application as cognitive enhancers and to treat various forms of dementia.  相似文献   

19.
The present study includes design and synthesis of new molecular hybrids of 2-methylthiobenzimidazole linked to various anti-inflammatory pharmacophores through 2-aminothiazole linker, to investigate the effect of such molecular variation on cyclooxygenase (COX) and 15-lipoxygenase (15-LOX) enzymes inhibition as well as in vivo anti-inflammatory activity. The chemical structures of new hybrids were confirmed using different spectroscopic tools and elemental analyses. Benzimidazole-thiazole hybrids linked to acetyl moiety 13, phenyl thiosemicarbazone 14, 1,3-thiazolines 15a-c and 4-thiazolidinone 16 exhibited significant COX-2 inhibition (IC50 = 0.045–0.075 µM) with significant COX-2 selectivity indices (SI = 142–294). All hybrids revealed potent 15-LOX inhibitory activity (IC50 = 1.67–6.56 µM). Benzimidazole-thiazole hybrid 15b was the most potent dual COX-2 (IC50 = 0.045 µM, SI = 294) inhibitor approximate to celecoxib (COX-2; IC50 = 0.045 µM, SI = 327), with double inhibitory activity versus 15-LOX enzyme (IC50 = 1.67 µM) relative to quercetin (IC50 = 3.34 µM). Three hybrids (14, 15b & 16) were selected for in vivo screening using carrageenan-induced paw edema method. Benzimidazole-thiazole hybrid linked to 4-thiazolidinone 16 showed the maximum edema inhibition at both 3 h and 4 h intervals as well (~119% and 102% relative to indomethacin, respectively). The gastric ulcerogenic effect of benzimidazole-thiazole hybrid 16 was estimated compared with indomethacin showing superior gastrointestinal safety profile. In bases of molecular modeling; all new active hybrids were subjected to docking simulation into active sites of COX-2 and 15-LOX enzymes to study the binding mode of these novel potent dual COX-2/15-LOX inhibitors.  相似文献   

20.
The mammalian ryanodine receptor Ca2+ release channel (RyR) has a single conserved high affinity calmodulin (CaM) binding domain. However, the skeletal muscle RyR1 is activated and cardiac muscle RyR2 is inhibited by CaM at submicromolar Ca2+. This suggests isoform-specific domains are involved in RyR regulation by CaM. To gain insight into the differential regulation of cardiac and skeletal muscle RyRs by CaM, RyR1/RyR2 chimeras and mutants were expressed in HEK293 cells, and their single channel activities were measured using a lipid bilayer method. All RyR1/RyR2 chimeras and mutants were inhibited by CaM at 2 μM Ca2+, consistent with CaM inhibition of RyR1 and RyR2 at micromolar Ca2+ concentrations. An RyR1/RyR2 chimera with RyR1 N-terminal amino acid residues (aa) 1–3725 and RyR2 C-terminal aa 3692–4968 were inhibited by CaM at <1 μM Ca2+ similar to RyR2. In contrast, RyR1/RyR2 chimera with RyR1 aa 1–4301 and RyR2 4254–4968 was activated at <1 μM Ca2+ similar to RyR1. Replacement of RyR1 aa 3726–4298 with corresponding residues from RyR2 conferred CaM inhibition at <1 μM Ca2+, which suggests RyR1 aa 3726–4298 are required for activation by CaM. Characterization of additional RyR1/RyR2 chimeras and mutants in two predicted Ca2+ binding motifs in RyR1 aa 4081–4092 (EF1) and aa 4116–4127 (EF2) suggests that both EF-hand motifs and additional sequences in the large N-terminal regions are required for isoform-specific RyR1 and RyR2 regulation by CaM at submicromolar Ca2+ concentrations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号