首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Motor proteins such as kinesin, myosin and polymerase convert chemical energy into work through a cycle that involves nucleotide hydrolysis. Kinetic rates in the cycle that depend upon load identify transitions at which structural changes, such as power strokes or diffusive motions, are likely to occur. Here we show, by modelling data obtained with a molecular force clamp, that kinesin mechanochemistry can be characterized by a mechanism in which a load-dependent isomerization follows ATP binding. This model quantitatively accounts for velocity data over a wide range of loads and ATP levels, and indicates that movement may be accomplished through two sequential 4-nm substeps. Similar considerations account for kinesin processivity, which is found to obey a load-dependent Michaelis-Menten relationship.  相似文献   

2.
Kinesins are molecular motors that transport various cargoes along microtubule tracks using energy derived from ATP hydrolysis. Although the motor domains of kinesins are structurally similar, the family contains members that move on microtubules in opposite directions. Recent biochemical and biophysical studies of several kinesins make it possible to identify structural elements responsible for the different directionality, suggesting that reversal of the motor movement can be achieved through small, local changes in the protein structure.  相似文献   

3.
The processive movement of single-headed kinesins is studied by using a ratchet model of non-Markov process, which is built on the experimental evidence that the strong binding of kinesin to microtubule in rigor state induces a large apparent change in the local microtubule conformation. In the model, the microtubule plays a crucial active role in the kinesin movement, in contrast to the previous belief that the microtubule only acts as a passive track for the kinesin motility. The unidirectional movement of single-headed kinesin is resulted from the asymmetric periodic potential between kinesin and microtubule while its processivity is determined by its binding affinity for microtubule in the weak ADP state. Using the model, various experimental results for monomeric kinesin KIF1A, such as the mean step size, the step-size distribution, the long run length and the mean velocity versus load, can be well explained quantitatively. This local conformational change of the microtubule may also play important roles in the processive movement of conventional two-headed kinesins. An experiment to verify the model is suggested.  相似文献   

4.
Kinesins are molecular motors capable of moving processively along microtubule in a stepwise manner by hydrolyzing ATP. Numerous experimental results on various aspects of their dynamical behaviours are available in literature. Although a number of models of tightly coordinated mechanism have been proposed to explain some experimental results, up to now no good explanation has been given to all these experimental results by using a single model. We have recently proposed such a model of partially coordinated hand-over-hand moving mechanism. In this paper, we use this model to study in detail various aspects of the dynamical properties of single kinesin molecules. We show that kinesin dimers walk hand-over-hand along microtubules in a partially coordinated rather than a tightly coordinated manner. The degree of coordination depends on the ratio of the two heads' ATPase rates that are in turn determined by both internal elastic force and external load. We have tested this model using various available experimental results on different samples and obtained a good agreement between the theory and the experiments.  相似文献   

5.
Conventional kinesin, a homodimeric motor protein that transports cargo in various cells, walks limpingly along microtubule. Here, based on our previously proposed partially coordinated hand-over-hand model, we present a new mechanism for the limping behaviors of both wild-type and mutant kinesin homodimers. The limping is caused by different vertical forces acting on the heads in two successive steps during the processive movement of the dimer. From the model, various theoretical results, such as the dependences of the mean dwell time and dwell time ratio on the coiled-coil length and on the external load as well as the effect of vertical force on velocity, are in good agreement with previous experimental results. We predict that a high degree of limping will correlate strongly with a high sensitivity of ATP turnover rate to upwards force.  相似文献   

6.
Ping Xie  Shuo-Xing Dou  Peng-Ye Wang 《BBA》2007,1767(12):1418-1427
The processive movement of single-headed kinesins is studied by using a ratchet model of non-Markov process, which is built on the experimental evidence that the strong binding of kinesin to microtubule in rigor state induces a large apparent change in the local microtubule conformation. In the model, the microtubule plays a crucial active role in the kinesin movement, in contrast to the previous belief that the microtubule only acts as a passive track for the kinesin motility. The unidirectional movement of single-headed kinesin is resulted from the asymmetric periodic potential between kinesin and microtubule while its processivity is determined by its binding affinity for microtubule in the weak ADP state. Using the model, various experimental results for monomeric kinesin KIF1A, such as the mean step size, the step-size distribution, the long run length and the mean velocity versus load, can be well explained quantitatively. This local conformational change of the microtubule may also play important roles in the processive movement of conventional two-headed kinesins. An experiment to verify the model is suggested.  相似文献   

7.
Kinesins form a large and diverse superfamily of proteins involved in numerous important cellular processes. The majority of them are molecular motors moving along microtubules. Conversion of chemical energy into mechanical work is accomplished in a sequence of events involving both biochemical and conformational alternation of the motor structure called the mechanochemical cycle. Different members of the kinesin superfamily can either perform their function in large groups or act as single molecules. Conventional kinesin, a member of the kinesin-1 subfamily, exemplifies the second type of motor which requires tight coordination of the mechanochemical cycle in two identical subunits to accomplish processive movement toward the microtubule plus end. Recent results strongly support an asymmetric hand-over-hand model of "walking" for this protein. Conformational strain between two subunits at the stage of the cycle where both heads are attached to the microtubule seems to be a major factor in intersubunit coordination, although molecular and kinetic details of this phenomenon are not yet deciphered. We discuss also current knowledge concerning intersubunit coordination in other kinesin subfamilies. Members of the kinesin-3 class use at least three different mechanisms of movement and can translocate in monomeric or dimeric forms. It is not known to what extent intersubunit coordination takes place in Ncd, a dimeric member of the kinesin-14 subfamily which, unlike conventional kinesin, exercises a power-stroke toward the microtubule minus end. Eg5, a member of the kinesin-5 subfamily is a homotetrameric protein with two kinesin-1-like dimeric halves controlled by their relative orientation on two microtubules. It seems that diversity of subunit organization, quaternary structures and cellular functions in the kinesin superfamily are reflected also by the divergent extent and mechanism of intersubunit coordination during kinesin movement along microtubules.  相似文献   

8.
Ping Xie 《BBA》2008,1777(9):1195-1202
The stepping behavior of the dimeric kinesin is studied by using our model based on previous biochemical, X-ray crystallography and cryo-electron microscopy studies. It is shown that, when a Pi is released from the trailing head, a forward step is made under a backward load smaller than the stall force; while when a Pi is released from the leading head, no stepping is made under a forward load or no load, and a backward step is made under a backward load. The forward stepping time, i.e., the time from the release of Pi in the trailing head to the binding of the ADP head to next binding site, is much smaller than the dwell time even under the backward load near the stall force. Thus the movement velocity of the kinesin dimer can be considered to be only dependent on ATPase rates of the two heads. The duration of the rising phase, i.e., the actual time taken by the ADP head to transit from the trailing to leading positions, is on the time scale of microseconds under any backward load smaller than the stall force. This is consistent with available experimental results.  相似文献   

9.
The stepping behavior of the dimeric kinesin is studied by using our model based on previous biochemical, X-ray crystallography and cryo-electron microscopy studies. It is shown that, when a Pi is released from the trailing head, a forward step is made under a backward load smaller than the stall force; while when a Pi is released from the leading head, no stepping is made under a forward load or no load, and a backward step is made under a backward load. The forward stepping time, i.e., the time from the release of Pi in the trailing head to the binding of the ADP head to next binding site, is much smaller than the dwell time even under the backward load near the stall force. Thus the movement velocity of the kinesin dimer can be considered to be only dependent on ATPase rates of the two heads. The duration of the rising phase, i.e., the actual time taken by the ADP head to transit from the trailing to leading positions, is on the time scale of microseconds under any backward load smaller than the stall force. This is consistent with available experimental results.  相似文献   

10.
Stone DB  Hjelm RP  Mendelson RA 《Biochemistry》1999,38(16):4938-4947
The dimeric structure of the members of the kinesin family of motor proteins determines the individual characteristics of their microtubule-based motility. Crystal structures for ncd and kinesin dimers, which move in opposite directions on microtubules, show possible states of these dimers with ADP bound but give no information about these dimers in solution. Here, low-angle X-ray and neutron scattering were used to investigate their solution structures. Scattering profiles of Drosophila ncd 281-700 (NCD281) and human kinesin 1-420 (hKIN420) were compared with models made from the crystallographically determined structures of NCD281 and rat kinesin 1-379 (rKIN379). From the low-angle region it was found that the radius of gyration (Rg) of NCD281 is 3.60 +/- 0.075 nm, which is in agreement with the crystallography-based model. Scattering by longer ncd constructs (NCD250 and NCD224) is also well fit by the appropriate crystallography-based models. However, the measured Rg of hKIN420, 4.05 +/- 0.075 nm, is significantly smaller than that of the crystallography-based model. In addition, the overall scattering pattern of NCD281 is well fit by the model, but that of hKIN420 is poorly fit. Model calculations indicate that the orientation of the catalytic cores is different from that observed in the rKIN379 crystal structure. Like the crystal structure, the best-fitting models do not show 2-fold symmetry about the neck axis; however, their overall shape more resembles a mushroom than the "T"-like orientation of the catalytic cores found in the crystal structure. The center of mass separations of the catalytic cores in the best-fitting models are 0.7-1 nm smaller than in the crystal structure.  相似文献   

11.
Despite significant fluctuation under thermal noise, biological machines in cells perform their tasks with exquisite precision. Using molecular simulation of a coarse-grained model and theoretical arguments, we envisaged how kinesin, a prototype of biological machines, generates force and regulates its dynamics to sustain persistent motor action. A structure-based model, which can be versatile in adapting its structure to external stresses while maintaining its native fold, was employed to account for several features of kinesin dynamics along the biochemical cycle. This analysis complements our current understandings of kinesin dynamics and connections to experiments. We propose a thermodynamic cycle for kinesin that emphasizes the mechanical and regulatory role of the neck linker and clarify issues related to the motor directionality, and the difference between the external stalling force and the internal tension responsible for the head-head coordination. The comparison between the thermodynamic cycle of kinesin and macroscopic heat engines highlights the importance of structural change as the source of work production in biomolecular machines.  相似文献   

12.
In long-range transport of cargo, prototypical kinesin-1 steps along a single protofilament on the microtubule, an astonishing behavior given the number of theoretically available binding sites on adjacent protofilaments. Using a laser trap assay, we analyzed the trajectories of several representatives from the kinesin-2 class on freely suspended microtubules. In stark contrast to kinesin-1, these motors display a wide range of left-handed spiraling around microtubules and thus generate torque during cargo transport. We provide direct evidence that kinesin's neck region determines the torque-generating properties. A model system based on kinesin-1 corroborates this result: disrupting the stability of the neck by inserting flexible peptide stretches resulted in pronounced left-handed spiraling. Mimicking neck stability by crosslinking significantly reduced the spiraling of the motor up to the point of protofilament tracking. Finally, we present a model that explains the physical basis of kinesin's spiraling around the microtubule.  相似文献   

13.
Machura L  Kostur M  Łuczka J 《Bio Systems》2008,94(3):253-257
Properties of transport of molecular motors are investigated. A simplified model based on the concept of Brownian ratchets is applied. We analyze a stochastic equation of motion by means of numerical methods. The transport is systematically studied with respect to its energetic efficiency and quality expressed by an effective diffusion coefficient. We demonstrate the role of friction and non-equilibrium driving on the transport quantifiers and identify regions of a parameter space where motors are optimally transported.  相似文献   

14.
15.
Regulation of the opposing kinesin and dynein motors that drive axonal transport is essential to maintain neuronal homeostasis. Here, we examine coordination of motor activity by the scaffolding protein JNK-interacting protein 1 (JIP1), which we find is required for long-range anterograde and retrograde amyloid precursor protein (APP) motility in axons. We identify novel interactions between JIP1 and kinesin heavy chain (KHC) that relieve KHC autoinhibition, activating motor function in single molecule assays. The direct binding of the dynactin subunit p150Glued to JIP1 competitively inhibits KHC activation in vitro and disrupts the transport of APP in neurons. Together, these experiments support a model whereby JIP1 coordinates APP transport by switching between anterograde and retrograde motile complexes. We find that mutations in the JNK-dependent phosphorylation site S421 in JIP1 alter both KHC activation in vitro and the directionality of APP transport in neurons. Thus phosphorylation of S421 of JIP1 serves as a molecular switch to regulate the direction of APP transport in neurons.  相似文献   

16.
Monte Carlo analysis of neck linker extension in kinesin molecular motors   总被引:1,自引:0,他引:1  
Kinesin stepping is thought to involve both concerted conformational changes and diffusive movement, but the relative roles played by these two processes are not clear. The neck linker docking model is widely accepted in the field, but the remainder of the step--diffusion of the tethered head to the next binding site--is often assumed to occur rapidly with little mechanical resistance. Here, we investigate the effect of tethering by the neck linker on the diffusive movement of the kinesin head, and focus on the predicted behavior of motors with naturally or artificially extended neck linker domains. The kinesin chemomechanical cycle was modeled using a discrete-state Markov chain to describe chemical transitions. Brownian dynamics were used to model the tethered diffusion of the free head, incorporating resistive forces from the neck linker and a position-dependent microtubule binding rate. The Brownian dynamics and chemomechanical cycle were coupled to model processive runs consisting of many 8 nm steps. Three mechanical models of the neck linker were investigated: Constant Stiffness (a simple spring), Increasing Stiffness (analogous to a Worm-Like Chain), and Reflecting (negligible stiffness up to a limiting contour length). Motor velocities and run lengths from simulated paths were compared to experimental results from Kinesin-1 and a mutant containing an extended neck linker domain. When tethered by an increasingly stiff spring, the head is predicted to spend an unrealistically short amount of time within the binding zone, and extending the neck is predicted to increase both the velocity and processivity, contrary to experiments. These results suggest that the Worm-Like Chain is not an adequate model for the flexible neck linker domain. The model can be reconciled with experimental data if the neck linker is either much more compliant or much stiffer than generally assumed, or if weak kinesin-microtubule interactions stabilize the diffusing head near its binding site.  相似文献   

17.
Conventional kinesin (Kinesin-1) is a microtubule-based molecular motor that supports intracellular vesicle/organelle transport in various eukaryotic cells. To arrange kinesin motors similarly to myosin motors on thick filaments in muscles, the motor domain of rat conventional kinesin (amino acid residues 1-430) fused to the C-terminal 829 amino acid residues of catchin (KHC430Cat) was bacterially expressed and attached to catchin filaments that can attach to and arrange myosin molecules in a bipolar manner on their surface. Unlike the case of myosin where actin filaments move toward the center much faster than in the opposite direction along the catchin filaments, microtubules moved at the same speed in both directions. In addition, many microtubules moved across the filaments at the same speed with various angles between the axes of the microtubule and catchin filament. Kinesin/catchin chimera proteins with a shorter kinesin neck domain were also prepared. Those without the whole hinge 1 domain and the C-terminal part of the neck helix moved microtubules toward the center of the catchin filaments significantly, but only slightly, faster than in the opposite direction, although the movements in both directions were slower than those of the KHC430Cat construct. The results suggest that kinesin has substantial mechanical flexibility within the motor domain, possibly within the neck linker, enabling its interaction with microtubules having any orientation.  相似文献   

18.
Trafficking of the proteins that form gap junctions (connexins) from the site of synthesis to the junctional domain appears to require cytoskeletal delivery mechanisms. Although many cell types exhibit specific delivery of connexins to polarized cell sites, such as connexin32 (Cx32) gap junctions specifically localized to basolateral membrane domains of hepatocytes, the precise roles of actin- and tubulin-based systems remain unclear. We have observed fluorescently tagged Cx32 trafficking linearly at speeds averaging 0.25 μm/s in a polarized hepatocyte cell line (WIF-B9), which is abolished by 50 μM of the microtubule-disrupting agent nocodazole. To explore the involvement of cytoskeletal components in the delivery of connexins, we have used a preparation of isolated Cx32-containing vesicles from rat hepatocytes and assayed their ATP-driven motility along stabilized rhodamine-labeled microtubules in vitro. These assays revealed the presence of Cx32 and kinesin motor proteins in the same vesicles. The addition of 50 μM ATP stimulated vesicle motility along linear microtubule tracks with velocities of 0.4-0.5 μm/s, which was inhibited with 1 mM of the kinesin inhibitor AMP-PNP (adenylyl-imidodiphosphate) and by anti-kinesin antibody but only minimally affected by 5 μM vanadate, a dynein inhibitor, or by anti-dynein antibody. These studies provide evidence that Cx32 can be transported intracellularly along microtubules and presumably to junctional domains in cells and highlight an important role of kinesin motor proteins in microtubule-dependent motility of Cx32.  相似文献   

19.
To examine the possible role of microtubule-based transport in testicular function, we used immunofluorescent techniques to study the presence and localization of the microtubule mechanoenzymes cytoplasmic dynein (a slow-growing end-directed motor) and kinesin (a fast-growing end-directed motor) within rat testis. Cytoplasmic dynein immunofluorescence was observed in Sertoli cells during all stages of spermatogenesis, with a peak in apical cytoplasm during stages IX-XIV. Cytoplasmic dynein immunofluorescence was also localized within Sertoli cells to steps 9-14 (stages IX-XIV) germ cell-associated ectoplasmic specializations. In germ cells, cytoplasmic dynein immunofluorescence was observed in manchettes of steps 15-17 (stages I-IV) spermatids, and small, hollow circular structures were seen in the cytoplasm of step 17 and step 18 spermatids during stages V and VI. Kinesin immunofluorescence was observed in manchettes of steps 10-18 spermatids (stages X-VI). The stage-dependent apical Sertoli cell cytoplasmic dynein immunofluorescence, in conjunction with the previously reported orientation of Sertoli cell microtubules (slow-growing ends toward the lumen) and peak secretion of androgen-binding protein and transferrin, is consistent with the hypothesis that cytoplasmic dynein is involved in Sertoli cell protein transport and secretion. Further, the localization of cytoplasmic dynein and kinesin to manchettes is consistent with current hypotheses concerning manchette function.  相似文献   

20.
Kinesin is a molecular motor that interacts with microtubules and uses the energy of ATP hydrolysis to produce force and movement in cells. To investigate the conformational changes associated with this mechanochemical energy conversion, we developed a fluorescence polarization microscope that allows us to obtain information on the orientation of single as well as many fluorophores. We attached either monofunctional or bifunctional fluorescent probes to the kinesin motor domain. Both types of labeled kinesins show anisotropic fluorescence signals when bound to axonemal microtubules, but the bifunctional probe is less mobile resulting in higher anisotropy. From the polarization experiments with the bifunctional probe, we determined the orientation of kinesin bound to microtubules in the presence of AMP-PNP and found close agreement with previous models derived from cryo-electron microscopy. We also compared the polarization anisotropy of monomeric and dimeric kinesin constructs bound to microtubules in the presence of AMP-PNP. Our results support models of mechanochemistry that require a state in which both motor domains of a kinesin dimer bind simultaneously with similar orientation with respect to the microtubule.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号