首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In Arabidopsis thaliana brassinosteroid (BR), perception is mediated by two Leu-rich repeat receptor-like kinases, BRASSINOSTEROID INSENSITIVE1 (BRI1) and BRI1-ASSOCIATED RECEPTOR KINASE1 (BAK1) (Arabidopsis SOMATIC EMBRYOGENESIS RECEPTOR-like KINASE3 [AtSERK3]). Genetic, biochemical, and yeast (Saccharomyces cerevisiae) interaction studies suggested that the BRI1-BAK1 receptor complex initiates BR signaling, but the role of the BAK1 receptor is still not clear. Using transient expression in protoplasts of BRI1 and AtSERK3 fused to cyan and yellow fluorescent green fluorescent protein variants allowed us to localize each receptor independently in vivo. We show that BRI1, but not AtSERK3, homodimerizes in the plasma membrane, whereas BRI1 and AtSERK3 preferentially heterodimerize in the endosomes. Coexpression of BRI1 and AtSERK3 results in a change of the steady state distribution of both receptors because of accelerated endocytosis. Endocytic vesicles contain either BRI1 or AtSERK3 alone or both. We propose that the AtSERK3 protein is involved in changing the equilibrium between plasma membrane-located BRI1 homodimers and endocytosed BRI1-AtSERK3 heterodimers.  相似文献   

2.
Plants possess a variety of extracellular leucine-rich repeats receptor-like kinases (LRR-RLKs) to coordinate developmental programs with responses to environmental changes. Out of sixteen families of LRR-RLKs in Arabidopsis, the LRR-RLKII family consists of fourteen individual members, including five Arabidopsis thaliana somatic embryogenesis receptor kinases (AtSERKs). BAK1/AtSERK3 was first identified as a dual co-receptor of BRI1 and FLS2, mediating BR signaling and pathogen-associated molecular pattern (PAMP) triggered immunity (PTI), respectively. Since its identification, many researchers have attempted to elucidate the phosphorylation mechanisms between receptor complexes and identify additional components that interact with receptor complexes to transduce the signaling downstream. Relatively detailed early events in complex formation, phosphorylation sites on the BRI1/BAK1 complex and BAK1-interacting proteins, such as BIK1 and PUB13, have been identified. Small receptor complexes consisting of BAK1 and BIR1 or BAK1 and AtSERK4 regulate cell death during steady state conditions. Moreover, the redundant and distinct functions of AtSERK proteins and other members of the LRR-RLKII family have been revealed. This review focuses on the integration of the information from the most recent studies concerning BAK1 and its homologs.  相似文献   

3.
14-3-3 proteins are pSer/pThr-binding proteins that interact with a wide array of cellular ‘client’ proteins. The plant brassinosteroids (BRs) receptor, BRASSINOSTEROID INSENSITIVE 1 (BRI1), is a member of the large family of leucine-rich repeat receptor-like kinases (LRR-RLKs) that contain cytoplasmic protein kinase domains. At least two LRR-RLKs are involved in BR perception and signal transduction: BRI1 and BRI1-associated receptor kinase 1 (BAK1). We determined that several 14-3-3 proteins bind to BRI1-CD and are phosphorylated by BRI1, BAK1 and At3g21430 receptor kinases in vitro. Moreover, we observed14-3-3 s are phosphorylated on threonine residue(s) with BR-dependent manner. To reveal the function of 14-3-3 proteins interacting with LRR-RLKs, we treated tyrosine phosphatase (PTP1B) to the BRI1-CD recombinant protein, which is autophosphorylated on tyrosine residue(s). Tyrosine autophosphorylation signal was disappeared, suggesting that 14-3-3 proteins cannot protect BRI1 tyrosine phosphorylation from PTP1B phosphatase. Our study suggests that 14-3-3 proteins may be important for plant growth and development through BR signaling.  相似文献   

4.
Brassinosteroid (BR) hormones are primarily perceived at the cell surface by the leucine-rich repeat receptor-like kinase BRASSINOSTEROID INSENSITIVE1 (BRI1). In Arabidopsis thaliana, BRI1 has two close homologs, BRI1-LIKE1 (BRL1) and BRL3, respectively, which are expressed in the vascular tissues and regulate shoot vascular development. Here, we identify novel components of the BRL3 receptor complex in planta by immunoprecipitation and mass spectrometry analysis. Whereas BRI1 ASSOCIATED KINASE1 (BAK1) and several other known BRI1 interactors coimmunoprecipitated with BRL3, no evidence was found of a direct interaction between BRI1 and BRL3. In addition, we confirmed that BAK1 interacts with the BRL1 receptor by coimmunoprecipitation and fluorescence microscopy analysis. Importantly, genetic analysis of brl1 brl3 bak1-3 triple mutants revealed that BAK1, BRL1, and BRL3 signaling modulate root growth and development by contributing to the cellular activities of provascular and quiescent center cells. This provides functional relevance to the observed protein–protein interactions of the BRL3 signalosome. Overall, our study demonstrates that cell-specific BR receptor complexes can be assembled to perform different cellular activities during plant root growth, while highlighting that immunoprecipitation of leucine-rich repeat receptor kinases in plants is a powerful approach for unveiling signaling mechanisms with cellular resolution in plant development.  相似文献   

5.
The Arabidopsis thaliana somatic embryogenesis receptor kinase 1 (AtSERK1) gene is expressed in developing ovules and early embryos. AtSERK1 is also transiently expressed during somatic embryogenesis. The predicted AtSERK1 protein contains an extracellular domain with a leucine zipper motif followed by five leucine-rich repeats, a proline-rich region, a single transmembrane region and an intracellular kinase domain. The AtSERK1 cDNA was fused to two different variants of green fluorescent protein (GFP), a yellow-emitting GFP (YFP) and a cyan-emitting GFP (CFP), and transiently expressed in both plant protoplasts and insect cells. Using confocal laser scanning microscopy it was determined that the AtSERK1-YFP fusion protein is targeted to plasma membranes in both plant and animal cells. The extracellular leucine-rich repeats, and in particular the N-linked oligosaccharides that are present on them appear to be essential for correct localization of the AtSERK1-YFP protein. The potential for dimerization of the AtSERK1 protein was investigated by measuring the YFP/CFP fluorescence emission ratio using fluorescence spectral imaging microscopy. This ratio will increase due to fluorescence resonance energy transfer if the AtSERK1-CFP and AtSERK1-YFP fusion proteins interact. In 15 % of the cells the YFP/CFP emission ratio for plasma membrane localized AtSERK1 proteins was enhanced. Yeast-protein interaction experiments confirmed the possibility for AtSERK1 homodimerization. Elimination of the extracellular leucine zipper domain reduced the YFP/CFP emission ratio to control levels indicating that without the leucine zipper domain AtSERK1 is monomeric.  相似文献   

6.
Plant receptor-like kinases (RLKs) are transmembrane proteins with putative N-terminal extracellular ligand-binding domains and C-terminal intracellular protein kinase domains. RLKs have been implicated in multiple physiological programs including plant development and immunity to microbial infection. Arabidopsis thaliana gene expression patterns support an important role of this class of proteins in biotic stress adaptation. Here, we provide a comprehensive survey of plant immunity-related RLK gene expression. We further document the role of the Arabidopsis Brassinosteroid Insensitive 1 (BRI1)-associated receptor kinase 1 (BAK1) in seemingly unrelated biological processes, such as plant development and immunity, and propose a role of this protein as an adaptor molecule that is required for proper functionality of numerous RLKs. This view is supported by the identification of an additional RLK, PEPR1, and its closest homolog, PEPR2 as BAK1-interacting RLKs.  相似文献   

7.
Brassinosteroids (BRs) regulate plant growth and development through a complex signal transduction pathway involving BRASSINOSTEROID INSENSITIVE 1 (BRI1), which is the BR receptor, and its co-receptor BRI1-ASSOCIATED KINASE 1 (BAK1). Both proteins are classified as Ser/Thr protein kinases. Recently, we reported that recombinant cytoplasmic domains (CD) of BRI1 and BAK1 also autophosphorylate on tyrosine residues and thus are dual-specificity kinases.1 Two sites of Tyr autophosphorylation were identified that appear to have different effects on BRI1 function. Tyr-831 in the juxtamembrane domain is not essential for kinase activity but has a regulatory role, with phosphorylation of Tyr-831 causing inhibition of growth and delay of flowering. In contrast, Tyr-956 is located in subdomain IV of the kinase domain and is essential for kinase activity, and we are speculating that the free hydroxyl group at this position is essential and thus phosphorylation of Tyr-956 would inhibit BRI1 kinase activity. Expression of BRI1(Y831F)-Flag in the weak allele bri1-5 rescued the dwarf phenotype but plants had rounder leaves, increased shoot biomass, and flowered earlier than plants expressing the BRI1(wild type)-Flag in the bri1-5 background. To further elaborate on earlier results, we present additional phenotypic analysis of transgenic Arabidopsis plants expressing BRI1(Y831F)-Flag or site-directed mutants of other Tyr residues within the kinase domain. The results highlight the unique role of Tyr-831 in regulation of BR signaling in vivo. Elucidating the molecular basis for increased biomass accumulation in plants expressing BRI1(Y831F)-Flag may have applications for agriculture.Key words: brassinosteroids, LRR-RLK, autophosphorylation, tyrosine phosphorylation, signal transduction  相似文献   

8.
To understand molecular processes in living plant cells, quantitative spectro-microscopic technologies are required. By combining fluorescence lifetime spectroscopy with confocal microscopy, we studied the subcellular properties and function of a GFP-tagged variant of the plasma membrane-bound brassinosteroid receptor BRI1 (BRI1-GFP) in living cells of Arabidopsis seedlings. Shortly after adding brassinolide, we observed BRI1-dependent cell-wall expansion, preceding cell elongation. In parallel, the fluorescence lifetime of BRI1-GFP decreased, indicating an alteration in the receptor's physico-chemical environment. The parameter modulating the fluorescence lifetime of BRI1-GFP was found to be BL-induced hyperpolarization of the plasma membrane. Furthermore, for induction of hyperpolarization and cell-wall expansion, activation of the plasma membrane P-ATPase was necessary. This activation required BRI1 kinase activity, and was mediated by BL-modulated interaction of BRI1 with the P-ATPase. Our results were used to develop a model suggesting that there is a fast BL-regulated signal response pathway within the plasma membrane that links BRI1 with P-ATPase for the regulation of cell-wall expansion.  相似文献   

9.
Brassinosteroids (BRs) regulate plant development through a signal transduction pathway involving the BRI1 and BAK1 transmembrane receptor kinases. The detailed molecular mechanisms of phosphorylation, kinase activation, and oligomerization of the BRI1/BAK1 complex in response to BRs are uncertain. We demonstrate that BR-dependent activation of BRI1 precedes association with BAK1 in planta, and that BRI1 positively regulates BAK1 phosphorylation levels in vivo. BRI1 transphosphorylates BAK1 in vitro on specific kinase-domain residues critical for BAK1 function. BAK1 also transphosphorylates BRI1, thereby quantitatively increasing BRI1 kinase activity toward a specific substrate. We propose a sequential transphosphorylation model in which BRI1 controls signaling specificity by direct BR binding followed by substrate phosphorylation. The coreceptor BAK1 is then activated by BRI1-dependent transphosphorylation and subsequently enhances signaling output through reciprocal BRI1 transphosphorylation. This model suggests both conservation and distinct differences between the molecular mechanisms regulating phosphorylation-dependent kinase activation in plant and animal receptor kinases.  相似文献   

10.
We report here the isolation of the Arabidopsis SOMATIC EMBRYOGENESIS RECEPTOR-LIKE KINASE 1 (AtSERK1) gene and we demonstrate its role during establishment of somatic embryogenesis in culture. The AtSERK1 gene is highly expressed during embryogenic cell formation in culture and during early embryogenesis. The AtSERK1 gene is first expressed in planta during megasporogenesis in the nucellus [corrected] of developing ovules, in the functional megaspore, and in all cells of the embryo sac up to fertilization. After fertilization, AtSERK1 expression is seen in all cells of the developing embryo until the heart stage. After this stage, AtSERK1 expression is no longer detectable in the embryo or in any part of the developing seed. Low expression is detected in adult vascular tissue. Ectopic expression of the full-length AtSERK1 cDNA under the control of the cauliflower mosaic virus 35S promoter did not result in any altered plant phenotype. However, seedlings that overexpressed the AtSERK1 mRNA exhibited a 3- to 4-fold increase in efficiency for initiation of somatic embryogenesis. Thus, an increased AtSERK1 level is sufficient to confer embryogenic competence in culture.  相似文献   

11.
Virus-induced gene silencing (VIGS) offers a powerful approach for functional analysis of individual genes by knocking down their expression. We have adopted this approach to dissect gene functions in cotton resistant to Verticillium wilt, one of the most devastating diseases worldwide. We showed here that highly efficient VIGS was obtained in a cotton breeding line (CA4002) with partial resistance to Verticillium wilt, and GhMKK2 and GhVe1 are required for its resistance to Verticillium wilt. Arabidopsis AtBAK1/SERK3, a central regulator in plant disease resistance, belongs to a subfamily of somatic embryogenesis receptor kinases (SERKs) with five members, AtSERK1 to AtSERK5. Two BAK1 orthologs and one SERK1 ortholog were identified in the cotton genome. Importantly, GhBAK1 is required for CA4002 resistance to Verticillium wilt. Surprisingly, silencing of GhBAK1 is sufficient to trigger cell death accompanied with production of reactive oxygen species in cotton. This result is distinct from Arabidopsis in which AtBAK1 and AtSERK4 play redundant functions in cell death control. Apparently, cotton has only evolved SERK1 and BAK1 whereas AtSERK4/5 are newly evolved genes in Arabidopsis. Our studies indicate the functional importance of BAK1 in Verticillium wilt resistance and suggest the dynamic evolution of SERK family members in different plant species.  相似文献   

12.
Leucine-rich repeat receptor-like kinases (LRR-RLKs) belong to a large group of cell surface proteins involved in many aspects of plant development and environmental responses in both monocots and dicots. Brassinosteroid insensitive 1 (BRI1), a member of the LRR X subfamily, was first identified through several forward genetic screenings for mutants insensitive to brassinosteroids (BRs), which are a class of plant-specific steroid hormones. Since its identification, BRI1 and its homologs had been proved as receptors perceiving BRs and initiating BR signaling. The co-receptor BRIl-associated kinase 1 and its homologs, and other BRI1 interacting proteins such as its inhibitor BRI1 kinase inhibitor I (BKI1) were identified by genetic andbiochemical approaches. The detailed mechanisms of BR perception by BRI1 and the activation of BRI1 receptor complex have also been elucidated. Moreover, several mechanisms for termination of the activated BRI1 signaling were also discovered. In this review, we will focus on the recent advances on the mechanism of BRI1 phosphorylation and activation, the regulation of its receptor complex, the structure basis of BRI1 ectodomain and BR recognition, its direct substrates, and the termination of the activated BRI1 receptor complex.  相似文献   

13.
In the endoplasmic reticulum, immature polypeptides coincide with terminally misfolded proteins. Consequently, cells need a well-balanced quality control system, which decides about the fate of individual proteins and maintains protein homeostasis. Misfolded and unassembled proteins are sent for destruction via the endoplasmic reticulum-associated degradation (ERAD) machinery to prevent the accumulation of potentially toxic protein aggregates. Here, we report the identification of Arabidopsis thaliana OS9 as a component of the plant ERAD pathway. OS9 is an ER-resident glycoprotein containing a mannose-6-phosphate receptor homology domain, which is also found in yeast and mammalian lectins involved in ERAD. OS9 fused to the C-terminal domain of YOS9 can complement the ERAD defect of the corresponding yeast Δyos9 mutant. An A. thaliana OS9 loss-of-function line suppresses the severe growth phenotype of the bri1-5 and bri1-9 mutant plants, which harbour mutated forms of the brassinosteroid receptor BRI1. Co-immunoprecipitation studies demonstrated that OS9 associates with Arabidopsis SEL1L/HRD3, which is part of the plant ERAD complex and with the ERAD substrates BRI1-5 and BRI1-9, but only the binding to BRI1-5 occurs in a glycan-dependent way. OS9-deficiency results in activation of the unfolded protein response and reduces salt tolerance, highlighting the role of OS9 during ER stress. We propose that OS9 is a component of the plant ERAD machinery and may act specifically in the glycoprotein degradation pathway.  相似文献   

14.
The plasma membrane-localized BRASSINOSTEROID-INSENSITIVE1 (BRI1) and BRI1-ASSOCIATED KINASE1 (BAK1) are a well-known receptor pair involved in brassinosteroids (BR) signaling in Arabidposis. The formation of a receptor complex in response to BRs and the subsequent activation of cytoplasmic domain kinase activity share mechanistic characteristics with animal receptor kinases. Here, we demonstrate that BRI1 and BAK1 are BR-dependently phosphorylated, and that phosphorylated forms of the two proteins persist for different lengths of time. Mutations of either protein abolished phosphorylation of the counterpart protein, implying transphosphorylation of the receptor kinases. To investigate the specific amino acids critical for formation of the receptor complex and activation of BAK1 kinase activity, we expressed several versions of BAK1 in yeast and plants. L32E and L46E substitutions resulted in a loss of binding of BAK1 to BRI1, and threonine T455 was essential for the kinase activity of BAK1 in yeast. Transgenic bri1 mutant plants overexpressing BAK1(L46E) displayed reduced apical dominance and seed development. In addition, transgenic wild type plants overexpressing BAK1(T455A) lost the phosphorylation activity normally exhibited in response to BL, leading to semi-dwarfism. These results suggest that BAK1 is a critical component regulating the duration of BR efficacy, even though it cannot directly bind BRs in plants.  相似文献   

15.
16.
The Arabidopsis thaliana somatic embryogenesis receptor‐like kinase (SERK) family consists of five leucine‐rich repeat receptor‐like kinases (LRR‐RLKs) with diverse functions such as brassinosteroid insensitive 1 (BRI1)‐mediated brassinosteroid perception, development and innate immunity. The autophosphorylation activity of the kinase domains of the five SERK proteins was compared and the phosphorylated residues were identified by LC‐MS/MS. Differences in autophosphorylation that ranged from high activity of SERK1, intermediate activities for SERK2 and SERK3 to low activity for SERK5 were noted. In the SERK1 kinase the C‐terminally located residue Ser‐562 controls full autophosphorylation activity. Activation loop phosphorylation, including that of residue Thr‐462 previously shown to be required for SERK1 kinase activity, was not affected. In vivo SERK1 phosphorylation was induced by brassinosteroids. Immunoprecipitation of CFP‐tagged SERK1 from plant extracts followed by MS/MS identified Ser‐303, Thr‐337, Thr‐459, Thr‐462, Thr‐463, Thr‐468, and Ser‐612 or Thr‐613 or Tyr‐614 as in vivo phosphorylation sites of SERK1. Transphosphorylation of SERK1 by the kinase domain of the main brassinosteroid receptor BRI1 occurred only on Ser‐299 and Thr‐462. This suggests both intra‐ and intermolecular control of SERK1 kinase activity. Conversely, BRI1 was transphosphorylated by the kinase domain of SERK1 on Ser‐887. BRI1 kinase activity was not required for interaction with the SERK1 receptor in a pull down assay.  相似文献   

17.
Systemin is a wound signaling peptide from tomato that is important for plant defenses against herbivory. The systemin receptor was initially identified as the tomato homolog of the brassinosteroid receptor BRI1, but genetic evidence argued against this finding. However, we found that BRI1 may function as an inappropriate systemin binding protein that does not activate the systemin signaling pathway. Here we provide evidence that systemin perception is localized in a tissue-type specific manner. Mesophyll protoplasts were not sensitive to systemin, while they responded to other elicitors. We hypothesize that the elusive systemin receptor is a protein with high similarity to BRI1 which is specifically localized in vascular tissue like the systemin precursor prosystemin. Binding of systemin to BRI1 may be an artifact of transgenic BRI1-overexpressing plants, but does not take place in wild type tomato cells.Key words: systemin, systemin receptor, brassinosteroids, BRI1, BRL, protoplastsSystemin is thought to be processed from its precursor prosystemin upon insect attack and wounding of tomato leaves. Strong evidence has been gathered for an important role of (pro-)systemin in the activation of defenses against insects, and the underlying signaling pathway has been studied in detail.1 However, the perception of systemin is controversial. Meindl et al.2 and Scheer and Ryan3 identified high affinity, saturable, reversible and specific cell surface binding sites on Solanum peruvianum suspension-cultured cells which are known to be highly sensitive to systemin.4 A purification approach using a photoaffinity systemin analog identified a 160 kDa protein as the systemin receptor (SR160).5 Follow-up studies showed that overexpression of tomato 35S::SR160 in systemin-insensitive tobacco plants conferred systemin sensitivity to tobacco.6 Surprisingly, SR160 turned out to be the tomato homolog of the brassinosteroid receptor BRI1,7 which raised many questions as to the functionality of a receptor for two structurally and functionally diverse ligands. It was then shown in two independent papers that a null mutant for tomato BRI1, cu-3, exhibited a normal response to systemin.8,9 This was strong evidence that SR160/BRI1 does not represent the functional systemin receptor. Our recent data added a peculiar twist to this story. We found that overexpression of tomato BRI1 in tobacco suspension-cultured cells resulted in binding of a fluorescently labeled systemin to the plasma membranes of the transgenic tobacco cells, but not to wild type cells. Surprisingly, this did not result in BRI1-dependent signal transduction and activation of a defense response, although we detected weak BRI1-independent signaling responses to systemin.10 Together with the identification of BRI1 as the systemin receptor by Scheer and Ryan,5 the simplest explanation for this phenomenon is that BRI1 is a systemin binding protein, but not the physiological systemin receptor.Therefore and for other reasons, we suggested that the true systemin receptor may be a protein with very similar properties as BRI1, e.g., a homolog of the BRI1-like (BRL) proteins. The purification strategy employed by Scheer and Ryan5 may have resulted in binding of a photoaffinity-systemin derivative to BRI1 and one or more BRL proteins. Since BRLs and BRI1 have a very similar MW, multiple bands on a SDS-PAGE would not be detectable.Here, we would like to add another aspect of systemin perception. We provide evidence for tissue-specific systemin sensitivity and discuss how this may affect systemin binding to BRI1 and the elusive systemin receptor. Prosystemin is only present in phloem parenchyma cells.11 It can be surmised that the systemin receptor is located close to these cells. Systemin perception results in JA synthesis in companion cells of vascular bundles.12 Since JA or a JA derivative is the most likely phloem-mobile candidate for a systemic long-distance wound signal, it is thought that JA is moving from companion cells into sieve cells to reach distant parts of the plant for upregulation of wound response genes in leaf cells, including mesophyll cells.1315Here, we tested the hypothesis that mesophyll cells lack systemin perception. We generated mesophyll protoplasts from tomato leaf material as well as protoplasts from S. peruvianum suspension-cultured cells, the same cell line that had been used for the purification of SR160/BRI1 and is known to be highly sensitive to systemin. Mesophyll protoplasts showed increased phosphorylation of MAP kinases (MPKs) in response to the elicitors flg22 and chitosan, bacterial and fungal MAMPs, respectively. However, they did not respond to systemin. In contrast, the S. peruvianum protoplasts did respond to systemin and to flg22, demonstrating that the protoplasting procedure did not compromise the systemin perception mechanism (Fig. 1). Immunocomplex kinase assays with specific antibodies against tomato MPK2 produced similar results (data not shown). Since flg22, chitosan and systemin activated the same MPKs (Fig. 1), our data indicate that systemin perception is absent in mesophyll protoplasts. Our leaf protoplasting protocol is a modification of the protocol by Yoo et al. which results in the generation of mesophyll protoplasts.16 In contrast, suspension-cultured cells do not normally represent specific cell types and it is not known why the S. peruvianum cells are highly sensitive to systemin.Open in a separate windowFigure 1Absence of systemin-induced MPK phosphorylation in mesophyll cells. Protoplasts were generated (protocol available upon request) from S. peruvianum suspension-cultured cells and from S. lycopersicum cv. MicroTom leaves. After a 1.5 hour recovery phase on ice, protoplasts were resuspended in WI medium (0.5 M mannitol, 5 mM ME S pH 5.7, 20 mM KCl), recovered for 1 hour in non-stick tubes with constant rotation on a rotary shaker at room temperature, and then treated with either water (con), 10 nM systemin (sys), 100 nM flg22, or 2.5 µg/ml chitosan (from crab shells—chi) for 10 min at room temperature. Protoplasts were analyzed for MPK phosphorylation by immunoblotting using an anti-phospho-ER K antibody (phospho-p44/42 MA PK (Erk1/2) (Thr202/Tyr204); D13.14.4E; Cell Signaling Technology) at a dilution of 1:2,000. This antibody recognizes MPKs that are phosphorylated on either the Thr and Tyr or on only the Thr within the TE Y phosphorylation motif which is conserved among plant and metazoan MPKs. It is known to recognize the tobacco MPKs SIPK and WIPK21 and Arabidopsis MPK6 and MPK3,22 the orthologs of tomato MPK1/2 and MPK3.23 Bands were visualized as described.10 Proteins on membranes were stained with Ponceau S to demonstrate equal loading.Intriguingly, BRL1, BRL2 and BRL3 are expressed in the vasculature and function in vascular pattern formation in Arabidopsis, while BRI1 is ubiquitously expressed in dividing and elongating cells. BRL3 is even specifically expressed in phloem cells.17 This matches the highly specific localization of prosystemin in the phloem parenchyma cells.11,18 The highest BRI1 expression is found in growing parts of young leaves17,19 while prosystemin is specifically present in the phloem parenchyma cells throughout all developmental stages.11 In this context, it is also interesting to note that application of systemin to tomato plants via the cut stem results in rapid and strong MPK activation. In this assay, systemin is delivered to leaf cells via the transpiration stream and therefore present in vascular tissue.20Based on the combined evidence, we propose that the true systemin receptor is a BRL or similar protein which is expressed in phloem cells in the vicinity of the parenchyma cells that express prosystemin, but not in mesophyll cells. Because of the similarity between BRLs and BRI1, BRI1 was erroneously identified as the systemin receptor. Inappropriate binding of systemin to BRI1 is consistent with the high similarity between BRI1 and BRLs. However, because of the tissue-specificity of the systemin signaling pathway, inappropriate binding of systemin to BRI1 may rarely occur in wild type plants and may not pose an interference problem for either systemin or brassinosteroid signaling.  相似文献   

18.
The plasma membrane-spanning receptor brassinosteroid insenstive 1 (BRI1) rapidly induces plant cell wall expansion in response to brassinosteroids such as brassinolide (BL). Wall expansion is accompanied by a rapid hyperpolarization of the plasma membrane, which is recordable by measuring the fluorescence lifetime (FLT) of the green fluorescent protein (GFP) fused to BRI1. For the BL induction of hyperpolarization and wall expansion, the activation of the plasma membrane P-type H+-ATPase is necessary. Furthermore, the activation of the P-ATPase requires BRI1 kinase activity and appears to be mediated by a BL-modulated association of BRI1 with the proton pump. Here, we show that BRI1 also associates with a mutant version of the Arabidopsis P-ATPase 1 (AHA1) characterized by an exchange of a well-known regulatory threonine for a non-phosphorylatable residue in the auto-inhibitory C-terminal domain. Even more important, BRI1 is still able to activate this AHA1 mutant in response to BL. This suggests a novel mechanism for the enzymatic activation of the P-ATPase by BRI1 in the plasma membrane. Furthermore, we demonstrate that the FLT of BRI1-GFP can be used as a non-invasive probe to analyze long-distance BL signaling in Arabidopsis seedlings.Key words: BRI1, fluorescence lifetime, membrane potential, P-ATPase, cell wall expansionUsing spectro-microscopic technologies, we recently started the quantitative analysis of the properties and subcellular function of GFP fusion of the plasma membrane-localized brassinosteroid (BR) receptor, BRI1, in living plant cells of Arabidopsis thaliana and tobacco (Nicotiana benthamiana) leaf cells.1,2 Brassinosteroids, such as brassinolide (BL), are involved in responses to biotic and abiotic stresses and developmental processes, including cell elongation.3 The present model of the BR response pathway includes the binding of BRs to BRI1, resulting in the autophosphorylation of the receptor and the subsequent recruitment of the co-receptor BRI1-associated receptor kinase 1 (BAK1). This association is followed by trans-phosphorylation between BRI1 and BAK1 and results in the activation of downstream BR signaling processes leading to differential gene expression and, finally, to the execution of the specific responses.4 However, the molecular events that take place in the plasma membrane immediately after the perception of BL and initiate cell elongation still have to be included in this model.5 We recently reported a rapid BRI1-GFP-dependent cell wall expansion in Arabidopsis seedlings, which is attributed to wall loosening and water incorporation into the wall, and precedes cell elongation.1,2 This expansion response was accompanied by a change in the FLT of BRI1-GFP, which reflects an alteration in the plasma membrane potential (Em).2,6 For both the FLT change in BRI1-GFP and the wall expansion, the activity of the plasma membrane P-ATPase is crucial. Notably, H+-pump activation was shown to depend on the kinase activity of BRI1.2 This suggests a fast BRI1-dependent response pathway in the plasma membrane which links BL perception via P-ATPase activation and Em hyperpolarization to wall expansion. In this report, we demonstrate that the phosphorylation of a conserved threonine in the auto-inhibitory domain of AHA1 is not required for the enzymatic activation by BRI1 suggesting a novel mechanism by which BRI1 may initiate the activation of the P-ATPase. Furthermore, we show that the FLT of BRI1-GFP is a useful and senstitive probe for the non-invasive analysis of systemic signaling processes in living plants.  相似文献   

19.
Signaling initiation by receptor-like kinases (RLKs) at the plasma membrane of plant cells often requires regulatory leucine-rich repeat (LRR) RLK proteins such as SERK or BIR proteins. The present work examined how the microbe-associated molecular pattern (MAMP) receptor FLS2 builds signaling complexes with BAK1 (SERK3). We first, using in vivo methods that validate separate findings by others, demonstrated that flg22 (flagellin epitope) ligand-initiated FLS2-BAK1 extracellular domain interactions can proceed independent of intracellular domain interactions. We then explored a candidate SERK protein interaction site in the extracellular domains (ectodomains; ECDs) of the significantly different receptors FLS2, EFR (MAMP receptors), PEPR1 (damage-associated molecular pattern (DAMP) receptor), and BRI1 (hormone receptor). Repeat conservation mapping revealed a cluster of conserved solvent-exposed residues near the C-terminus of models of the folded LRR domains. However, site-directed mutagenesis of this conserved site in FLS2 did not impair FLS2-BAK1 ECD interactions, and mutations in the analogous site of EFR caused receptor maturation defects. Hence this conserved LRR C-terminal region apparently has functions other than mediating interactions with BAK1. In vivo tests of the subsequently published FLS2-flg22-BAK1 ECD co-crystal structure were then performed to functionally evaluate some of the unexpected configurations predicted by that crystal structure. In support of the crystal structure data, FLS2-BAK1 ECD interactions were no longer detected in in vivo co-immunoprecipitation experiments after site-directed mutagenesis of the FLS2 BAK1-interaction residues S554, Q530, Q627 or N674. In contrast, in vivo FLS2-mediated signaling persisted and was only minimally reduced, suggesting residual FLS2-BAK1 interaction and the limited sensitivity of co-immunoprecipitation data relative to in vivo assays for signaling outputs. However, Arabidopsis plants expressing FLS2 with the Q530A+Q627A double mutation were impaired both in detectable interaction with BAK1 and in FLS2-mediated responses, lending overall support to current models of FLS2 structure and function.  相似文献   

20.
The Arabidopsis (Arabidopsis thaliana) SOMATIC EMBRYOGENESIS RECEPTOR KINASE (SERK) genes belong to a small family of five plant receptor kinases that are involved in at least five different signaling pathways. One member of this family, BRASSINOSTEROID INSENSITIVE1 (BRI1)-ASSOCIATED KINASE1 (BAK1), also known as SERK3, is the coreceptor of the brassinolide (BR)-perceiving receptor BRI1, a function that is BR dependent and partially redundant with SERK1. BAK1 (SERK3) alone controls plant innate immunity, is also the coreceptor of the flagellin receptor FLS2, and, together with SERK4, can mediate cell death control, all three in a BR-independent fashion. SERK1 and SERK2 are essential for male microsporogenesis, again independent from BR. SERK5 does not appear to have any function under the conditions tested. Here, we show that the different SERK members are only redundant in pairs, whereas higher order mutant combinations only show additive phenotypes. Surprisingly, SERK members that are redundant within one are not redundant in another pathway. We also show that this evolution of functional pairs occurred by a change in protein function and not by differences in spatial expression. We propose that, in plants, closely related receptor kinases have a minimal homo- or heterodimeric configuration to achieve specificity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号