首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
It is known that the pH dependence of conductance for the rat potassium channel Kv1.4 is susbstantially reduced upon mutation of either H508 or K532. These residues lie in the extracellular mouth of the channel pore. We have used continuum electrostatics to investigate their interactions with K(+) sites in the pore. The predicted scale of interactions between H508/K532 and potassium sites is sufficient to significantly alter potassium occupancy and thus channel function. We interpret the effect of K532 mutation as indicating that the pH-dependent effect requires not only an ionisable group with a suitable pK(a) value (i.e. histidine), but also that other charged groups set the potential profile at a threshold level. This hypothesis is examined in the context of pH dependence for other members of the Kv1 family, and may represent a general tool with which to study potassium channels.  相似文献   

2.
3.
The subtypes of meningococci are defined by antigenic determinants on the class 1 outer membrane proteins. The established subtypes, designated by P1 and a number according to the prototype reference strain on which they were first recognized by monoclonal antibodies, includes P1.2, P1.9, P1.15 and P1.16. We have investigated more prototype reference strains, using new monoclonal antibodies, and identified the new subtypes P1.1, P1.6 and P1.1,16. The P1.1,16 epitope is found on both the P1.1 and the P1.16 reference strains, but not on all P1.1 and P1.16 strains and can occur independently from the P1.1 and the P1.16 epitopes. It appears that class 1 outer membrane proteins contain at least two independent subtype-specific epitopes. For clarity, we now redefine P1.1,16 as P1.7, permitting thus the identification of strains of P1.1, P1.1,7, P1.7, P1.7,16 and P1.16 subtypes. It can clearly be expected that more class 1 outer membrane protein determinants will be recognized as more monoclonal typing antibodies are produced. The monoclonal antibodies now available to us can subtype 80-90% of group B and C meningococci; they also react with group A meningococci, but not with other Neisseriae. The immunological dissection of these subtyping antigens will improve our understanding of the relationship between components of the bacteria and the induction or prevention of disease.  相似文献   

4.
Colicin E1 is a soluble, bacteriocidal protein that forms voltage-gated channels in planar lipid bilayers. The channel-forming region of the 522-amino acid protein is near the COOH terminus, and contains a 35-amino acid hydrophobic segment which is presumed to be important in interacting with the membrane. We have used site-directed mutagenesis in the region immediately upstream from the hydrophobic segment to construct several functional colicin mutants in which a wild-type residue was replaced with a cysteine. We also replaced the only naturally occurring cysteine in the molecule, Cys-505, with alanine, so that synthetically introduced cysteines could unambiguously serve as targets for chemical modification. All of the replacements reported here (at positions 449, 459, 473, 505, and some combinations) resulted in a channel that had an ion selectivity (K+ versus Cl-) identical to wild type at low pH. At higher pH, however, one of these mutations, which replaced the negatively charged aspartate at position 473 (the upstream boundary of the hydrophobic segment), resulted in a channel that was less cation-selective than was wild type. When the introduced Cys-473 was reacted with iodoacetic acid, which inserted a COOH group close to the position of the missing aspartate COOH, wild-type ion selectivity was restored, suggesting that the greater cation selectivity of the wild-type channel was directly produced by the negative charge at Asp-473. By comparing the ion selectivity of the Cys-473 mutant channel to that of the wild type as a function of the pH on the cis and trans sides of the membrane, it was possible to locate residue 473 close to the cis side. Locating in this manner the positions in the channel of particular residues places important constraints on channel model building.  相似文献   

5.
The outer membrane protein PorB of Neisseria meningitidis is a pore-forming protein which has various effects on eukaryotic cells. It has been shown to (1) up-regulate the surface expression of the co-stimulatory molecule CD86 and of MHC class II (which are TLR2/MyD88 dependent and related to the porin's immune-potentiating ability), (2) be involved in prevention of apoptosis by modulating the mitochondrial membrane potential, and (3) form pores in eukaryotic cells. As an outer membrane protein, its native trimeric form isolation is complicated by its insoluble nature, requiring the presence of detergent throughout the whole procedure, and by its tight association with other outer membrane components, such as neisserial LOS or lipoproteins. In this study, an improved chromatographic purification method to obtain an homogeneous product free of endotoxin and lipoprotein is described, without loss of any of the above-mentioned properties of the porin. Furthermore, we have investigated the requirement of the native trimeric structure for the porin's activity. Inactivation of functional PorB trimers into non-functional monomers was achieved by incubation on ice. Thus, routine long- and medium-term storage at low temperature may be a cause of porin inactivation.  相似文献   

6.
pH-dependent structures and properties of casein micelles   总被引:4,自引:0,他引:4  
Liu Y  Guo R 《Biophysical chemistry》2008,136(2-3):67-73
The association behavior of casein over a broad pH range has first been investigated by fluorescent technique together with DLS and turbidity measurements. Casein molecules can self-assemble into casein micelles in the pH ranges 2.0 to 3.0, and 5.5 to 12.0. The hydrophobic interaction, hydrogen bond and electrostatic action are the main interactions in the formation of casein micelles. The results show that the structure of casein micelles is more compact at low pH and looser at high pH. The casein micelle has the most compact structure at pH 5.5, when it has almost no electrostatic repulsion between casein molecules.  相似文献   

7.
Summary The E1 subgroup (E1, A, Ib, etc.) of antibacterial toxins called colicins are known to form voltage-dependent channels in planar lipid bilayers. The genes for colicins E1, A and Ib have been cloned and sequenced, making these channels interesting models for the widespread phenomenon of voltage dependence in cellular channels. In this paper we investigate ion selectivity and channel size—properties relevant to model building. Our major finding is that the colicin E1 channel is large, having a diameter ofat least 8 Å at its narrowest point. We established this from measurements of reversal potentials for gradients formed by salts of large cations or large anions. In so doing, we exploited the fact that the colicin channel is permeable to both cations and anions, and its relative selectivity to them is a functions and anions, and its relative selectivity to them is a function of pH. The channel is anion selective (Cl over K+) in neutral membranes, and the degree of selectivity is highly dependent on pH. In negatively charged membranes, it becomes cation selective at pH's higher than about 5. Experiments with pH gradients cross the membrane suggest that titratable groups both within the channel lumen and near the channel ends affect the selectivity. Individual E1 channels have more than one open conductance state, all displaying comparable ion selectivity. Colicins A and Ib also exhibit pH-dependent ion selectivity, and appear to have even larger lumens than E1.  相似文献   

8.
Alamethicin K18 is a covalently linked alamethicin dimer in which the glutamine residue at position 18 in each helix has been replaced by a lysine residue. As described in previous work, channels formed by this peptide show pH-dependent selectivity. The maximum anion selectivity of the putative octameric conducting state is obtained at pH 7 or lower. Inasmuch as no change in selectivity is seen between pH 7 and pH 3, and because protons are expected to be in equilibrium with the open state of the channel during a selectivity measurement, the channel is believed to be fully charged (i.e., all eight lysines protonated) at pH 7. In an effort to understand how such a highly charged channel structure is stable in membranes and why it is not more selective for anions, we have performed a number of computer simulations of the system. Molecular dynamics simulations of 10 ns each of the octameric bundle in a lipid bilayer environment are presented, with either zero, four, or eight lysines charged in the absence of salt, and with eight lysines charged in the presence of 0.5 M and 1 M KCl. When no salt is present and all lysines are charged, on average 1.9 Cl(-) ions are inside the channel and the channel significantly deforms. With 0.5 M KCl present, 2.9 Cl(-) ions are inside the channel. With 1 M KCl present, four Cl(-) ions are present and the channel maintains a regular structure. Poisson-Boltzmann calculations on models of the octameric channel also predict an average of 2-4 Cl(-) ions near the lysine residues as a function of ionic strength. These counterions lower the apparent charge of the channel, which may underlie the decrease in selectivity observed experimentally with increasing salt concentrations. We suggest that to increase the selectivity of Alm K18 channels, positive charges could be engineered in a narrower part of the channel.  相似文献   

9.
A recent molecular dynamics study questioned the protonation state and physiological role of aspartate 127 (D127) of E. coli porin OmpF. To address that question we isolated two OmpF mutants with D127 either neutralized (D127N) or replaced by a positively charged lysine (D127K). The charge state of the residue at position 127 has clear effects on both conductance and selectivity. The D127K but not the D127N mutant expresses resilient conductance and selectivity fluctuations. These fluctuations reflect, we think, either changes in the ionization state of K127 and/or transitions between unstable subconformations as induced by the electrostatic repulsion between two positively charged residues, K127 and the nearby R167. Our results slightly favor the view that in WT OmpF residue D127 is deprotonated. As for the role of D127 in OmpF functionality, the gating of both mutants shows very similar sensitivity toward voltage as WT OmpF. Moreover, the current fluctuations of the D127K mutant were observed also in the absence of an applied electric field. We therefore dismiss D127 as a key residue in the control mechanism of the voltage-dependent gating of OmpF.  相似文献   

10.
pH-dependent pore formation properties of pardaxin analogues   总被引:4,自引:0,他引:4  
The interaction of pardaxin, a shark-repellent neurotoxin, and its charge-modified analogues with vesicles and human erythrocytes is described. The following six analogues and derivatives were synthesized by a solid phase method: [Glu8, Glu16]pardaxin, [N1-succinamido,Glu8,Glu16]pardaxin, [N1,Lys8,Lys16-triacetyl]pardaxin, des-[1----9]pardaxin (Shai, Y., Bach, D., and Yanovsky, A. (1990) J. Biol. Chem. 265, 20202-20209), and des-[1----9] [Glu16]pardaxin. The relative hydrophobic characteristics of the analogues were examined using reverse-phase high performance liquid chromatography. The pH-dependent spectroscopic and functional characteristics of the analogues were also investigated at either neutral or acidic pH. Spectroscopic characterization was achieved by measuring circular dichroism both before and after binding to vesicles, at either neutral or acidic pH. The ability of the peptides to dissipate a diffusion potential, to cause calcein release or the pH-dependent release of 8-aminonaphthalene-1,3,6-trisulfonic acid disodium salt/p-xylene-bis[pyridinium bromide] from sonicated unilamellar liposomes, as well as measurements of cytolytic activity on human erythrocytes, served to functionally characterize the peptides. We show a direct correlation between alpha-helical content, the analogues' hydrophobicity, and their pore-forming properties at the different pH values tested. We also demonstrate that the charge of the N terminus and of the peptide backbone, but not of the C terminus, affects the secondary structure as well as the activities of the analogues. Finally, we show that the cytolytic activity of pardaxin at neutral pH is not retained by any of the analogues.  相似文献   

11.
OmpF is an essentially nonselective porin isolated from the outer membrane of Escherichia coli. Here we report on the manipulation of the ion selectivity of OmpF by chemical modification with MTS reagents (MTSET, MTSEA, and MTSES) and the (rather bulky) tripeptide glutathione, all cysteine specific. When recorded in a gradient of 0.1//1 M CaCl2 or 0.1//1 M NaCl, pH 7.4 solutions, measured reversal potentials of the most cation-selective modified mutants were (virtually) identical to the Nernst potential of Ca2+ or Na+. Compared to this full cation selectivity, the anion-selective modified mutants performed somewhat less but nevertheless showed high anion selectivity. We conclude that a low permanent charge in combination with a narrow pore can render the same selectivity as a highly charged but wider pore. These results favor the view that both the electrostatic potential arising form the fixed charge in the pore and the space available at the selectivity filter contribute to the charge selection (i.e., cation versus anion selectivity) of a biological ion channel.  相似文献   

12.
Nonsymbiotic class 1 plant hemoglobins are induced under hypoxia. Structurally they are protein dimers consisting of two identical subunits, each containing heme iron in a weak hexacoordinate state. The weak hexacoordination of heme-iron binding to the distal histidine results in an extremely high avidity to oxygen, with a dissociation constant in the nanomolar range. This low dissociation constant is due to rapid oxygen binding resulting in protein conformational changes that slow dissociation from the heme site. Class 1 hemoglobins are characterized by an increased rate of Fe3(+) reduction which is likely mediated by cysteine residue. This cysteine can form a reversible covalent bond between two monomers as shown by mass spectrometry analysis and, in addition to its structural role, prevents the molecule from autoxidation. The structural properties of class 1 hemoglobins allow them to serve as soluble electron transport proteins in the enzymatic system scavenging nitric oxide produced in low oxygen via reduction of nitrite. During oxygenation of nitric oxide to nitrate, oxidized ferric hemoglobin is formed (methemoglobin), which can be reduced by an associated reductase. The identified candidate for this reduction is monodehydroascorbate reductase. It is suggested that hemoglobin functions as a terminal electron acceptor during the hypoxic turnover of nitrogen, the process aided by its extremely high affinity for oxygen.  相似文献   

13.
Human diferric transferrin was partially labeled with 59Fe at low or neutral pH (chemically labeled) and by replacement of diferric iron previously donated to rabbit reticulocytes (biologically labeled). Reticulocyte 59Fe uptake experiments with chemically labeled preparations indicated that iron bound at near neutral pH was more readily incorporated by reticulocytes than iron bound at low pH. The pH-dependent iron dissociation studies of biologically labeled transferrin solutions indicated that Fe3+, bound at the site from which the metal was initially utilized by the cells, dissociated between pH 5.8 and 7.4. In contrast, lower pH (5.2--5.8) was required to effect dissociation of iron that has remained bound to the protein after incubation with reticulocytes. These findings suggest that each human transferrin iron-binding site has different acid-base iron-binding properties which could be related to the observed heterogenic rabbit reticulocyte iron-donating properties of human transferrin and identifies that the near neutral iron-binding site initially surrenders its iron to these cells.  相似文献   

14.
Using ion channel reconstitution in planar lipid bilayers, we examined the channel-forming activity of subfractions of Pseudomonas aeruginosa OprF, which was shown to exist in two different conformations: a minority single domain conformer and a majority two-domain conformer (Sugawara, E., Nestorovich, E. M., Bezrukov, S. M., and Nikaido, H. (2006) J. Biol. Chem. 281, 16220-16229). With the fraction depleted for the single domain conformer, we were unable to detect formation of any channels with well defined conductance levels. With the unfractionated OprF, we saw only rare channel formation. However, with the single domain-enriched fraction of OprF, we observed regular insertion of channels with highly reproducible conductances. Single OprF channels demonstrate rich kinetic behavior exhibiting spontaneous transitions between several subconformations that differ in ionic conductance and radius measured in polymer exclusion experiments. Although we showed that the effective radius of the most conductive conformation exceeds that of the general outer membrane porin of Escherichia coli, OmpF, we also found that a single OprF channel mainly exists in weakly conductive subconformations and switches to the fully open state for a short time only. Therefore, the low permeability of OprF reported earlier may be due to two factors: mainly to the paucity of the single domain conformer in the OprF population and secondly to the predominance of weakly conductive subconformations within the single domain conformer.  相似文献   

15.
The polycomponent meningococcae vaccine represented a preparation of the high-molecular fraction of meningococcus cell wall substances. Meningococcae strains for the vaccine preparation were chosen in such a way that the end preparation contained antigens of group specificity A, B, C and also other antigens detected in the cell wall of strains of epidemiological significance. Protein, group polysaccharides., lipopolysaccharides and nucleic acids were included into the vaccine composition. In doses used inhumans the vaccine was safe for mice causing no retardation in weight gain. In immunization of mice the vaccine produced formation of antigbodies to the antigens of group specificity A, B, and C, and protected them from infection with the srtrain isolated from the patient's cerebrospinal fluid. THE VACCINE PRODUCED NO HARMFUL ACTION IN ADMINISTRATION TO MAN. Antibodies to antigens of group specificity A, B, C and also to proteins and lipopolysaccharides of the meningococcus cell wall formed in the vaccinated persons. Sera of the vaccinated individuals lysed meningococci of groups A, B, and C.  相似文献   

16.
Earlier studies proved that Pseudomonas aeruginosa OprD is a specific porin for basic amino acids and imipenem. It was also considered to function as a nonspecific porin that allowed the size-dependent uptake of monosaccharides and facilitation of the uptake of quinolone and other antibiotics. In the present study, we utilized P. aeruginosa strains with genetically defined levels of OprD to characterize the in vivo substrate selectivity of this porin. An oprD::omega interposon mutant was constructed by gene replacement utilizing an in vitro mutagenized cloned oprD gene. In addition, OprD was overexpressed from the lac promoter by cloning the oprD gene into the broad-host-range plasmid pUCP19. To test the substrate selectivity, strains were grown in minimal medium with limiting concentrations of the carbon sources glucose, gluconate, or pyruvate. In minimal medium with 0.5 mM gluconate, the growth rates of the parent strain H103 and its oprD::omega mutant H729 were only 60 and 20%, respectively, of that of the OprD-overexpressing strain H103(pXH2). In contrast, no significant differences were observed in the growth rates of these three strains on glucose or pyruvate, indicating that OprD selectively facilitated the transport of gluconate. To determine the role of OprD in antibiotic uptake, nine strains representing different levels of OprD and OprF were used to determine the MICs of different antibiotics. The results clearly demonstrated that OprD could be utilized by imipenem and meropenem but that, even when substantially overexpressed, it could not be significantly utilized by other beta-lactams, quinolones, or aminoglycosides. In addition, competition experiments confirmed that imipenem had common binding sites with basic amino acids in the OprD channel, but not with gluconate or glucose.  相似文献   

17.
《MABS-AUSTIN》2013,5(2):294-302
pH-dependent antibodies are engineered to release their target at a slightly acidic pH, a property making them suitable for clinical as well as biotechnological applications. Such antibodies were previously obtained by histidine scanning of pre-existing antibodies, a labor-intensive strategy resulting in antibodies that displayed residual binding to their target at pH 6.0. We report here the de novo isolation of pH-dependent antibodies selected by phage display from libraries enriched in histidines. Strongly pH-dependent clones with various affinity profiles against CXCL10 were isolated by this method. Our best candidate has nanomolar affinity for CXCL10 at pH 7.2, but no residual binding was detected at pH 6.0. We therefore propose that this new process is an efficient strategy to generate pH-dependent antibodies.  相似文献   

18.
Incorporation of the matrix protein (porin) from the outer membrane of Escherichia coli into black lipid films results in the formation of ion-permeable pores with a single-pore conductance of the order of 2 nS (in 1 M KCl). Information on the structure of this pore has been obtained by determining the selectivity for various species differing in charge and size. From the permeability of the pore for large organic ions (Tris+, glucosamine+, Hepes-) a minimum pore diameter of 0.8 nm is estimated. At neutral pH the pore is two to four times more permeable for alkali ions than for chloride. On the basis of the observed pH dependence of permeability, this cationic selectivity is explained by the assumption that the pore contains fixed negative charges.  相似文献   

19.
The PhoE porin of Escherichia coli is induced by phosphate deprivation and when purified, forms moderately anion-selective channels in lipid bilayer membranes. To further investigate the basis of anion selectivity, PhoE was chemically acetylated with acetic anhydride. Acetylation modified the mobility and staining characteristics of the PhoE porin on SDS-polyacrylamide gel electrophoresis but the acetylated protein was still found in its normal trimeric state after solubilization in SDS at low temperatures. Furthermore, the acetylated PhoE porin retained its ability to reconstitute into lipid bilayer membranes and the single channel conductance in 1 M KCl was unaltered. Zero-current potential measurements demonstrated that whereas the native PhoE porin was anion-selective, a 30-40-fold increase in preference for cations upon acetylation resulted in the acetylated PhoE porin being cation-selective. Increasing the pH of KCl solutions bathing lipid bilayer membranes from pH 3 to pH 6 caused symmetrical 4-fold increases in the selectivity of both the native and acetylated PhoE proteins for cations. In contrast, increasing the pH from 7 to 9 caused a 2.5-fold increase in selectivity only for the native PhoE porin. These results suggest that the basis of anion selectivity in the native PhoE porin is fixed protonated amino groups (possibly on lysines) in or near the channel, and furthermore indicate that deprotonated carboxyl groups have a strong influence on ion selectivity.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号