首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Electrostatic interactions can have a significant impact on protein transmission through semipermeable membranes. Experimental data for the transport of bovine serum albumin (BSA) through a polyethersulfone ultrafiltration membrane were obtained in different salt solutions over a range of pH and salt concentrations. Net BSA charge under the same conditions was evaluated from mobility data measured by capillary electrophoresis. The results show that specific ionic composition, in addition to solution pH and ionic strength, can strongly affect the rate of protein transport through semipermeable ultrafiltration membranes. The effects of different ions on BSA sieving are due primarily to differences in ion binding to the protein, which leads to significant differences in the net protein charge at a given pH and ionic strength. This effect could be described in terms of an effective protein radius, which accounts for the electrostatic exclusion of the charged protein from the membrane pores. These results provide important insights into the nature of the electrostatic interactions in membrane systems.  相似文献   

2.
The adsorption equilibria of bovine serum albumin (BSA), gamma-globulin, and lysozyme to three kinds of Cibacron blue 3GA (CB)-modified agarose gels, 6% agarose gel-coated steel heads (6AS), Sepharose CL-6B, and a home-made 4% agarose gel (4AB), were studied. We show that ionic strength has irregular effects on BSA adsorption to the CB-modified affinity gels by affecting the interactions between the negatively charged protein and CB as well as CB and the support matrix. At low salt concentrations, the increase in ionic strength decreases the electrostatic repulsion between negatively charged BSA and the negatively charged gel surfaces, thus resulting in the increase of BSA adsorption. This tendency depends on the pore size of the solid matrix, CB coupling density, and the net negative charges of proteins (or aqueous - phase pH value). Sepharose gel has larger average pore size, so the electrostatic repulsion-effected protein exclusion from the small gel pores is observed only for the affinity adsorbent with high CB coupling density (15.4 micromol/mL) at very low ionic strength (NaCl concentration below 0.05 M in 10 mM Tris-HCl buffer, pH 7.5). However, because CB-6AS and CB-4AB have a smaller pore size, the electrostatic exclusion effect can be found at NaCl concentrations of up to 0.2 M. The electrostatic exclusion effect is even found for CB-6AS with a CB density as low as 2.38 micromol/mL. Moreover, the electrostatic exclusion effect decreases with decreasing aqueous-phase pH due to the decrease of the net negative charges of the protein. For gamma-globulin and lysozyme with higher isoelectric points than BSA, the electrostatic exclusion effect is not observed. At higher ionic strength, protein adsorption to the CB-modified adsorbents decreases with increasing ionic strength. It is concluded that the hydrophobic interaction between CB molecules and the support matrix increases with increasing ionic strength, leading to the decrease of ligand density accessible to proteins, and then the decrease of protein adsorption. Thus, due to the hybrid effect of electrostatic and hydrophobic interactions, in most cases studied there exists a salt concentration to maximize BSA adsorption.  相似文献   

3.
The effects of medium pH, ionic strength, and composition on the formation of macrocomplexes of seed storage proteins from wheat, rye, and barley have been studied. Various noncovalent interactions (electrostatic and hydrophobic interactions and hydrogen bonds) are involved in protein aggregation. Their combined action depends significantly on the biochemical nature of the storage proteins and on the medium.  相似文献   

4.
The effects of pH, ionic strength, and medium composition on formation of macrocomplexes of seed storage proteins from wheat, rye, and barley have been studied. It has been found that various noncovalent interactions (electrostatic and hydrophobic interactions and hydrogen bonds) are involved in protein aggregation. Their combined action depends significantly on the biochemical nature of storage proteins and on the medium.  相似文献   

5.
Electric field pulses induce a substantial increase of the light scattering intensity of double-helical DNA. The relative change of light scattering and also the reciprocal relaxation time constants under electric field pulses increase with increasing nucleotide concentration. These observations, together with a large difference between dichroism orientation time constants and light scattering time constants under electric field pulses, demonstrate that the main part of the light scattering effect is due not to field-induced orientation but to interactions between DNA helices. From the concentration dependence of the light scattering time constants we obtain, according to an isodesmic reaction model, association rate constants in the range 3 × 1010 M?1 helices s?1 for DNA with approx. 300 base-pairs. These values are at the limit of a diffusion-controlled DNA association and do not show any dependence upon the field strength. The dissociation rate constants kd decrease strongly with increasing field strength E and thus demonstrate that the interactions between the helices are induced by the electric field. This conclusion is consistent with independent measurements which do not reveal any DNA association at zero field strength. The observed linear relation between log(kd) and E2 suggests a field-induced reaction driven by dipole changes. According to this interpretation the change of dipole moment should be in the range of approx. 1400 debye. The dissociation rates for DNA helices with approx. 300 to approx. 800 base-pairs strongly increase with increasing sail concentration (measured in the range 1–5 mM ionic strength), whereas the association rate constants remain virtually unchanged. Measurements of the linear dichroism in the same range of DNA chain length demonstrate that for long field pulses of e.g., 40 μs, the amplitude approaches a maximum value and then decreases. The dichroism relaxation curves observed after long field pulses exhibit a component with a positive dichroism and an increased decay time. These observations suggest the formation of a DNA aggregate with an unusual arrangement of the bases.  相似文献   

6.
The binding of gene-5 protein, encoded by bacteriophage M13, to oligodeoxynucleic acids was studied by means of fluorescence binding experiments, fluorescence depolarization measurements and irreversible dissociation kinetics of the protein.nucleotide complexes with salt. The binding properties thus obtained are compared with those of the binding to polynucleotides, especially at very low salt concentration. It appears that the binding to oligonucleotides is always characterized by a stoichiometry (n) of 2-3 nucleotides/protein, and the absence of cooperativity. In contrast the protein can bind to polynucleotides in two different modes, one with a stoichiometry of n = 3 in the absence of salt and another with n = 4 at moderate salt concentrations. Both modes have a high intramode cooperativity (omega about 500) but are non-interacting and mutually exclusive. For deoxynucleic acids with a chain length of 25-30 residues a transition from oligonucleotide to polynucleotide binding is observed at increasing nucleotide/protein ratio in the solution. The n = 3 polynucleotide binding is very sensitive to the ionic strength and is only detectable at very low salt concentrations. The ionic strength dependency per nucleotide of the n = 4 binding is much less and is comparable with the salt dependency of the oligonucleotide binding. Furthermore it appears that the influence of the salt concentration on the oligonucleotide binding constant is to about the same degree determined by the effect of salt on the association and dissociation rate constants. Model calculations indicate that the fluorescence depolarization titration curves can only be explained by a model for oligonucleotide binding in which a protein dimer binds with its two dimer halves to the same strand. In addition it is only possible to explain the observed effect of the chain length of the oligonucleotide on both the apparent binding constant and the dissociation rate by assuming the existence of interactions between protein dimers bound to different strands. This results in the formation of a complex consisting of two nucleotide strands with protein in between and stabilized by the dimer-dimer interactions.  相似文献   

7.
Thermodynamic analysis of the lactose repressor-operator DNA interaction   总被引:4,自引:0,他引:4  
Kinetic and equilibrium constants for lactose repressor-operator DNA interaction have been examined as a function of salt concentration, size and sequence context of the operator DNA, and temperature. Significant salt effects were observed on kinetic and equilibrium parameters for pLA 322-8, an operator-containing derivative of pBR 322, and pIQ, an operator and pseudooperator-containing derivative of pBR 322. The association rate constant and equilibrium constant for the 40 base pair operator fragment were also salt dependent. Data for all the DNAs were consistent with a sliding mechanism for repressor-operator association/dissociation [Berg, O. G., & Blomberg, C. (1978) Biophys. Chem. 8, 271-280]. Calculation of the number of ionic interactions based on salt dependence yielded a value of approximately 8 for repressor binding to pIQ and pLA 322-8 vs. approximately 6 for the repressor-40 base pair fragment. These data and the differences in binding parameters for the plasmids vs. the 40 base pair operator are consistent with the formation of an intramolecular ternary complex in the plasmid DNAs. Unusual biphasic temperature dependence was observed in the equilibrium and dissociation rate constants for pLA 322-8, pIQ, and the 40 base pair fragment. These observations coupled with a discontinuity found in the inducer association rate constant as a function of temperature suggest a structural change in the protein. The large positive entropy contributions associated with repressor binding to all the DNAs examined provide the significant driving force for the reaction and are consistent with involvement of ionic and apolar interactions in complex formation.  相似文献   

8.
Polymer dynamics are of fundamental importance in materials science, biotechnology, and medicine. However, very little is known about the kinetics of partitioning of flexible polymer molecules into pores of nanometer dimensions. We employed electrical recording to probe the partitioning of single poly(ethylene glycol) (PEG) molecules, at concentrations near the dilute regime, into the transmembrane beta-barrel of individual protein pores formed from staphylococcal alpha-hemolysin (alphaHL). The interactions of the alpha-hemolysin pore with the PEGs (M(w) 940-6000 Da) fell into two classes: short-duration events (tau approximately 20 micro s), approximately 85% of the total, and long-duration events (tau approximately 100 micro s), approximately 15% of the total. The association rate constants (k(on)) for both classes of events were strongly dependent on polymer mass, and values of k(on) ranged over two orders of magnitude. By contrast, the dissociation rate constants (k(off)) exhibited a weak dependence on mass, suggesting that the polymer chains are largely compacted before they enter the pore, and do not decompact to a significant extent before they exit. The values of k(on) and k(off) were used to determine partition coefficients (Pi) for the PEGs between the bulk aqueous phase and the pore lumen. The low values of Pi are in keeping with a negligible interaction between the PEG chains and the interior surface of the pore, which is independent of ionic strength. For the long events, values of Pi decrease exponentially with polymer mass, according to the scaling law of Daoud and de Gennes. For PEG molecules larger than approximately 5 kDa, Pi reached a limiting value suggesting that these PEG chains cannot fit entirely into the beta-barrel.  相似文献   

9.
We study, by laser flash photolysis, the effects of ionic strength on the kinetics of the reaction 3Zncyt + az(II) → Zncyt+ + az(I), i.e., oxidative quenching of the triplet state of zinc cytochrome c by the wild-type form and the following three mutants of cupriazurin: Met44Lys, Met64Glu, and the double mutant Met44Lys/Met64Glu. Mutations in the hydrophobic patch of azurin significantly affect the reactivity of the protein with the triplet state of zinc cytochrome c. Dependence on the ionic strength of the bimolecular rate constant for the aforementioned reaction is analyzed by several electrosatic models. The two transition-state theories, Brønsted-Debye-Hückel and van Leeuwen theories, allow the best approximation to the experimental data when effective charges of the proteins are used. Protein-protein interactions are also analyzed in terms of local charges on the protein surfaces. The rate constants depend little on ionic strength, and the monopolar and dipolar electrostatic interactions between zinc cytochrome c and azurin are not well resolved. Semiquantitative analysis of electrostatic interactions indicates that azurin uses its hydrophobic patch for contact with zinc cytochrome c.  相似文献   

10.
How Hofmeister ion interactions affect protein stability.   总被引:1,自引:1,他引:0  
Model compound studies in the literature show how Hofmeister ion interactions affect protein stability. Although model compound results are typically obtained as salting-out constants, they can be used to find out how the interactions affect protein stability. The null point in the Hofmeister series, which divides protein denaturants from stabilizers, arises from opposite interactions with different classes of groups: Hofmeister ions salt out nonpolar groups and salt in the peptide group. Theories of how Hofmeister ion interactions work need to begin by explaining the mechanisms of these two classes of interactions. Salting-out nonpolar groups has been explained by the cavity model, but its use is controversial. When applied to model compound data, the cavity model 1) uses surface tension increments to predict the observed values of the salting-out constants, within a factor of 3, and 2) predicts that the salting-out constant should increase with the number of carbon atoms in the aliphatic side chain of an amino acid, as observed. The mechanism of interaction between Hofmeister ions and the peptide group is not well understood, and it is controversial whether this interaction is ion-specific, or whether it is nonspecific and the apparent specificity resides in interactions with nearby nonpolar groups. A nonspecific salting-in interaction is known to occur between simple ions and dipolar molecules; it depends on ionic strength, not on position in the Hofmeister series. A theory by Kirkwood predicts the strength of this interaction and indicates that it depends on the first power of the ionic strength. Ions interact with proteins in various ways besides the Hofmeister ion interactions discussed here, especially by charge interactions. Much of what is known about these interactions comes from studies by Serge Timasheff and his co-workers. A general model, suitable for analyzing diverse ion-protein interactions, is provided by the two-domain model of Record and co-workers.  相似文献   

11.
12.
The interaction of three different c-type cytochromes with flavodoxin has been studied by computer graphics modelling and computational methods. Flavodoxin and each cytochrome can make similar hypothetical electron transfer complexes that are characterized by nearly coplanar arrangement of the prosthetic groups, close intermolecular contacts at the protein-protein interface, and complementary intermolecular salt linkages. Computation of the electrostatic free energy of each complex showed that all were electrostatically stable. However, both the magnitude and behavior of the electrostatic stabilization as a function of solution ionic strength differed for the three cytochrome c-flavodoxin complexes. Variation in the computed electrostatic stabilization appears to reflect differences in the surface distribution of all charged groups in the complex, rather than differences localized at the site of intermolecular contact. The computed electrostatic association constants for the complexes and the measured kinetic rates of electron transfer in solution show a remarkable similarity in their ionic strength dependence. This correlation suggests electrostatic interactions influence electron transfer rates between protein molecules at the intermolecular association step. Comparative calculations for the three cytochrome c-flavodoxin complexes show that these ionic strength effects also involve all charged groups in both redox partners.  相似文献   

13.
A detailed understanding of the kinetics of DNA motion though nanometer-scale pores is important for the successful development of many of the proposed next-generation rapid DNA sequencing and analysis methods. Many of these approaches require DNA motion through nanopores to be slowed by several orders of magnitude from its native translocation velocity so that the translocation times for individual nucleotides fall within practical timescales for detection. With the increased dwell time of DNA in the pore, DNA-pore interactions begin to play an increasingly important role in translocation kinetics. In previous work, we and others observed that when the DNA dwell time in the pore is substantial (>1 ms), DNA motion in α-hemolysin (α-HL) pores leads to nonexponential kinetics in the escape of DNA out of the pore. Here we show that a three-state model for DNA escape, involving stochastic binding interactions of DNA with the pore, accurately reproduces the experimental data. In addition, we investigate the sequence dependence of the DNA escape process and show that the interaction strength of adenine with α-HL is substantially lower relative to cytosine. Our results indicate a difference in the process by which DNA moves through an α-HL nanopore when the motion is fast (microsecond timescale) as compared with when it is slow (millisecond timescale) and strongly influenced by DNA-pore interactions of the kind reported here. We also show the ability of wild-type α-HL to detect and distinguish between 5-methylcytosine and cytosine based on differences in the absolute ionic current through the pore in the presence of these two nucleotides. The results we present here regarding sequence-dependent (and dwell-time-dependent) DNA-pore interaction kinetics will have important implications for the design of methods for DNA analysis through reduced-velocity motion in nanopores.  相似文献   

14.
Simultaneous stochastic sensing of divalent metal ions   总被引:1,自引:0,他引:1  
Braha O  Gu LQ  Zhou L  Lu X  Cheley S  Bayley H 《Nature biotechnology》2000,18(9):1005-1007
Stochastic sensing is an emerging analytical technique that relies upon single-molecule detection. Transmembrane pores, into which binding sites for analytes have been placed by genetic engineering, have been developed as stochastic sensing elements. Reversible occupation of an engineered binding site modulates the ionic current passing through a pore in a transmembrane potential and thereby provides both the concentration of an analyte and, through a characteristic signature, its identity. Here, we show that the concentrations of two or more divalent metal ions in solution can be determined simultaneously with a single sensor element. Further, the sensor element can be permanently calibrated without a detailed understanding of the kinetics of interaction of the metal ions with the engineered pore.  相似文献   

15.
Mitochondrial outer membrane permeabilization (MOMP) is a complex multistep process. Studies of MOMP in vivo are limited by the stochastic variability of MOMP between cells and rapid completion of IMS protein release within single cells. In vitro models have provided useful insights into MOMP. We have investigated the dynamics of Bax-mediated MOMP in isolated mitochondria using ionic strength as a tool to control the rate of MOMP. We find that Bax can induce both transient permeabilization, detected by protein release, and more substantial long-lasting permeabilization, measured by the rate of oxidation of added cytochrome c. We found that higher ionic strength causes Bax to form small channels quickly but the expansion of these early channels is impeded. This inhibitory effect of ionic strength is independent of tBid. Channels formed under low ionic strength are not destabilized by raising the ionic strength. Increase in ionic strength also increases the ability of Bcl-xL to inhibit Bax-mediated MOMP. Ionic strength does not affect Bax insertion into mitochondria. Thus, ionic strength influences the assembly of Bax molecules already in membrane into channels. Ionic strength can be used as an effective biophysical tool to study Bax-mediated channel formation.  相似文献   

16.
17.
《Biophysical journal》2022,121(4):552-564
Our knowledge of the folding behavior of proteins from extremophiles is limited at this time. These proteins may more closely resemble the primordial proteins selected in early evolution under extreme conditions. The small archaeal modifier protein 1 (SAMP1) studied in this report is an 87-residue protein with a β-grasp fold found in the halophile Haloferax volcanii from the Dead Sea. To gain insight into the effects of salt on the stability and folding mechanism of SAMP1, we conducted equilibrium and kinetic folding experiments as a function of sodium chloride concentration. The results revealed that increasing ionic strength accelerates refolding and slows down unfolding of SAMP1, giving rise to a pronounced salt-induced stabilization. With increasing NaCl concentration, the rate of folding observed via a combination of continuous-flow (0.1–2 ms time range) and stopped-flow measurements (>2 ms) exhibited a >100-fold increase between 0.1 and 1.5 M NaCl and leveled off at higher concentrations. Using the Linderström-Lang smeared charge formalism to model electrostatic interactions in ground and transition states encountered during folding, we showed that the observed salt dependence is dominated by Debye-Hückel screening of electrostatic repulsion among numerous negatively charged residues. Comparisons are also drawn with three well-studied mesophilic members of the β-grasp superfamily: protein G, protein L, and ubiquitin. Interestingly, the folding rate of SAMP1 in 3 M sodium chloride is comparable to that of protein G, ubiquitin, and protein L at lower ionic strength. The results indicate the important role of electrostatic interactions in protein folding and imply that proteins have evolved to minimize unfavorable charge-charge interactions under their specific native conditions.  相似文献   

18.
Plant cuticles are lipid membranes with separate diffusion paths for lipophilic non-electrolytes and hydrated ionic compounds. Ions are lipid insoluble and require an aqueous pathway across cuticles. Based on experimental data, the aqueous pathway in cuticles has been characterized. Aqueous pores arise by hydration of permanent dipoles and ionic functional groups. They can be localized using ionic fluorescent dyes, silver nitrate, and mercuric chloride. Aqueous pores preferentially occur in cuticular ledges, at the base of trichomes, and in cuticles over anticlinal walls. Average pore radii ranged from 0.45 to 1.18 nm. Penetration of ions was a first order process as the fraction of the salt remaining on the cuticle surface decreased exponentially with time. Permeability of cuticles to ions depended on humidity and was highest at 100% humidity. Wetting agents increased rate constants by factors of up to 12, which indicates that the pore openings are surrounded by waxes. The pores in cuticular ledges of Helxine soleirolii allowed passage of berberine sulphate, which has a molecular weight of 769 g mol(-1). Increasing the molecular weight of solutes from 100 to 500 g mol(-1) decreased the rate constants of penetration by factors of 7 (Vicia faba) and 13 (Populus canescens), respectively. Half-times of penetration of inorganic salts and organic ions across Populus cuticles and Vicia leaf surfaces varied between 1 and 12 h. This shows that penetration of ionic compounds can be fairly rapid, and ions with molecular weights of up to 800 g mol(-1) can penetrate cuticles that possess aqueous pores.  相似文献   

19.
20.
Liquid-liquid phase separation was studied for a monoclonal antibody in the monovalent salt solutions of KF, KCl, and KSCN under different pH conditions. A modified Carnahan-Starling hard-sphere model was utilized to fit the experimental data, establish the liquid-liquid coexistence curve, and determine antibody-antibody interactions in the form of Tc (critical temperature) under the different solution conditions. The liquid-liquid phase separation revealed the complex relationships between antibody-antibody interactions and different solution conditions, such as pH, ionic strength, and the type of anion. At pH 7.1, close to the pI of the antibody, a decrease of Tc versus ionic strength was observed at low salt conditions, suggesting that the protein-protein interactions became less attractive. At a pH value below the pI of the antibody, a nonmonotonic relationship of Tc versus ionic strength was apparent: initially as the ionic strength increased, protein-protein interactions became more attractive with the effectiveness of the anions following the inverse Hofmeister series; then the interactions became less attractive following the direct Hofmeister series. This nonmonotonic relationship may be explained by combining the charge neutralization by the anions, perhaps with the ion-correlation force for polarizable anions, and their preferential interactions with the antibody.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号