首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Zorro-LNA (Zorro) is a newly developed, oligonucleotide (ON)-based, Z-shaped construct with the potential of specific binding to each strand of duplex DNA. The first-generation Zorros are formed by two hybridized LNA/DNA mixmers (2-ON Zorros) and was hypothesized to strand invade. We have now established a method, which conclusively demonstrates that an LNA ON can strand invade into duplex DNA. To make Zorros smaller in size and easier to design, we synthesized 3′–5′–5′–3′ single-stranded Zorro-LNA (ssZorro) by using both 3′- and 5′-phosphoramidites. With ssZorro, a significantly greater extent and rate of double-strand invasion (DSI) was obtained than with conventional 2-ON Zorros. Introducing hydrophilic PEG-linkers connecting the two strands did not significantly change the rate or extent of DSI as compared to ssZorro with a nucleotide-based linker, while the longest alkyl-chain linker tested (36 carbons) resulted in a very slow DSI. The shortest alkyl-chain linker (3 carbons) did not reduce the extent of DSI of ssZorro, but significantly decreased the DSI rate. Collectively, ssZorro is smaller in size, easier to design and more efficient than conventional 2-ON Zorro in inducing DSI. Analysis of the chemical composition of the linker suggests that it could be of importance for future therapeutic considerations.  相似文献   

2.
Because of the pivotal role that the nerve enzyme, acetylcholinesterase plays in terminating nerve impulses at cholinergic synapses. Its active site, located deep inside a 20 Å gorge, is a vulnerable target of the lethal organophosphorus compounds. Potent reactivators of the intoxicated enzyme are nucleophiles, such as bispyridinium oxime that binds to the peripheral anionic site and the active site of the enzyme through suitable cation–π interactions. Atomic scale molecular dynamics and free energy calculations in explicit water are used to study unbinding pathways of two oxime drugs (Ortho‐7 and Obidoxime) from the gorge of the enzyme. The role of enzyme‐drug cation–π interactions are explored with the metadynamics simulation. The metadynamics discovered potential of mean force (PMF) of the unbinding events is refined by the umbrella sampling (US) corrections. The bidimensional free energy landscape of the metadynamics runs are further subjected to finite temperature string analysis to obtain the transition tube connecting the minima and bottlenecks of the unbinding pathway. The PMF is also obtained from US simulations using the biasing potential constructed from the transition tube and are found to be consistent with the metadynamics‐US corrected results. Although experimental structural data clearly shows analogous coordination of the two drugs inside the gorge in the bound state, the PMF of the drug trafficking along the gorge pathway point, within an equilibrium free energy context, to a multistep process that differs from one another. Routes, milestones and subtlety toward the unbinding pathway of the two oximes at finite temperature are identified. Proteins 2014; 82:1799–1818. © 2014 Wiley Periodicals, Inc.  相似文献   

3.
Drug permeability determines the oral availability of drugs via cellular membranes. Poor permeability makes a drug unsuitable for further development. The permeability may be estimated as the free energy change that the drug should overcome through crossing membrane. In this paper the drug permeability was simulated using molecular dynamics method and the potential energy profile was calculated with potential of mean force (PMF) method. The membrane was simulated using DPPC bilayer and three drugs with different permeability were tested. PMF studies on these three drugs show that doxorubicin (low permeability) should pass higher free energy barrier from water to DPPC bilayer center while ibuprofen (high permeability) has a lower energy barrier. Our calculation indicates that the simulation model we built is suitable to predict drug permeability.  相似文献   

4.
Gas chromatography/mass spectrometry (GC/MS-SIM) is an excellent technique for performing both qualitative and quantitative analysis of DNA base damage products that are formed by exposure to ionizing radiation or by the interaction of intracellular DNA with activated oxygen species. This technique commonly uses a hot formic acid hydrolysis step to degrade the DNA to individual free bases. However, due to the harsh nature of this degradation procedure, the quantitation of DNA base damage products may be adversely affected. Consequently, we examined the effects of various formic acid hydrolysis procedures on the quantitation of a number of DNA base damage products and identified several factors that can influence this quantitation. These factors included (1) the inherent acid stabilities of both the lesions and the internal standards; (2) the hydrolysis temperature; (3) the source and grade of the formic acid; and (4) the sample mass during hydrolysis. Our data also suggested that theN,O-bis (trimethylsilyl)trifluoroacetamide (BSTFA) derivatization efficiency can be adversely affected, presumably by trace contaminants either in the formic acid or from the acid-activated surface of the glass derivatization vials. Where adverse effects were noted, modifications were explored in an attempt to improve the quantitation of these DNA lesions. Although experimental steps could be taken to minimize the influence of these factors on the quantitation of some base damage products, no single procedure solved the quantitation problem for all base lesions. However, a significant improvement in the quantitation was achieved if the relative molecular response factor (RMRF) values for these lesions were generated with authentic DNA base damage products that had been treated exactly like the experimental samples. Abbreviations 5,6-diHThy 5,6-dihydrothymine · 5-OH-Me-Ura 5-hydroxymethyluracil · 5-OH-5-Me-Hyd 5-hy-droxy-5-methylhydantoin · 5-OH-Ura 5-hydroxyuracil · 5-OH-Cyt 5-hydroxycytosine · Thy glycolcis andtrans isomers of 5,6-dihydroxy-5,6-dihydrothymine · 8-OH-Ade 8-hydroxyadenine · FapyAde 4,6-diamino-5-formamido-pyrimidine · 8-OH-Gua 8-hydroxyguanine · FapyGua 2,6-diamino-4-oxo-5-formamidopyrimidine · dCMP2-deoxy-cytidine-5-monophosphate · BSTFA N,O-bis(trimethylsilyl)trifluoroacetamide · TMS trimethylsilyl · GC/MS-SIM gas chromatography/mass spectrometry with selective ion monitoring · HPLC high performance liquid chromatography · RMRF relative molar response factorMuch of this work was presented at the 204th National Meeting of the American Chemical Society, Washington, DC, August 23–28, 1992, and at the 41st Annual Meeting of the Radiation Research Society, Dallas, March 19–24, 1993  相似文献   

5.
6.
The homodimeric Ocr (overcome classical restriction) protein of bacteriophage T7 is a molecular mimic of double-stranded DNA and a highly effective competitive inhibitor of the bacterial type I restriction/modification system. The surface of Ocr is replete with acidic residues that mimic the phosphate backbone of DNA. In addition, Ocr also mimics the overall dimensions of a bent 24-bp DNA molecule. In this study, we attempted to delineate these two mechanisms of DNA mimicry by chemically modifying the negative charges on the Ocr surface. Our analysis reveals that removal of about 46% of the carboxylate groups per Ocr monomer results in an ∼ 50-fold reduction in binding affinity for a methyltransferase from a model type I restriction/modification system. The reduced affinity between Ocr with this degree of modification and the methyltransferase is comparable with the affinity of DNA for the methyltransferase. Additional modification to remove ∼ 86% of the carboxylate groups further reduces its binding affinity, although the modified Ocr still binds to the methyltransferase via a mechanism attributable to the shape mimicry of a bent DNA molecule. Our results show that the electrostatic mimicry of Ocr increases the binding affinity for its target enzyme by up to ∼ 800-fold.  相似文献   

7.
Metronidazole (MTZ) is an antibiotic commonly used to treat anaerobic bacterial infections in humans and animals. Antibiotic resistance toward this class of 5-nitroimidazole (5-Ni) drug derivatives has been related to the Nim genes thought to encode a reductase. Here we report the biophysical characteristics of the NimA protein from Deinococcus radiodurans (DrNimA) binding to MTZ and three other 5-Ni drugs. The interaction energies of the protein and antibiotic are studied by isothermal titration calorimetry (ITC) and with free energy and linear interaction energy (LIE) calculations, where the latter method revealed that the antibiotic binding is mainly of hydrophobic character. ITC measurements further found that one DrNimA dimer has two antibiotic binding sites which were not affected by mutation of the reactive His71. The observed association constants (Ka) were in the range of 5.1–49 ? 104 M− 1 and the enthalpy release upon binding to DrNimA for the four drugs studied was relatively low (∼ − 1 kJ/mol) but still measurable. The drug binding is mainly entropy driven and along with the hydrophobic drug binding site found by crystallography, this possibly explains the low observed enthalpy values. The effect of the His71 mutation and the presence of MTZ were studied by differential scanning calorimetry (DSC). Native DrNimA is a yellow colored protein where the interaction from His71 to the cofactor is thought to be responsible for the coloring. Mutations of His71 to Ala, Ser, Leu or Asp all gave transparent, colorless protein solutions, and the two mutant crystal structures of DrNimA-H71A and DrNimA-H71S presented revealed no cofactor binding.  相似文献   

8.
Law SM  Feig M 《Biophysical journal》2011,(9):2223-2231
DNA mismatch recognition and repair is vital for preserving the fidelity of the genome. Conserved across prokaryotes and eukaryotes, MutS is the primary protein that is responsible for recognizing a variety of DNA mismatches. From molecular dynamics simulations of the Escherichia coli MutS-DNA complex, we describe significant conformational dynamics in the DNA surrounding a G·T mismatch that involves weakening of the basepair hydrogen bonding in the basepair adjacent to the mismatch and, in one simulation, complete base opening via the major groove. The energetics of base flipping was further examined with Hamiltonian replica exchange free energy calculations revealing a stable flipped-out state with an initial barrier of ∼2 kcal/mol. Furthermore, we observe changes in the local DNA structure as well as in the MutS structure that appear to be correlated with base flipping. Our results suggest a role of base flipping as part of the repair initiation mechanism most likely leading to sliding-clamp formation.  相似文献   

9.
N Osheroff 《Biochemistry》1989,28(15):6157-6160
Beyond its essential physiological functions, topoisomerase II is the primary cellular target for a number of clinically relevant antineoplastic drugs. Although the chemotherapeutic efficacies of these drugs correlate with their abilities to stabilize the covalent topoisomerase II-DNA cleavage complex, their molecular mechanism of action has yet to be described. In order to characterize the drug-induced stabilization of this enzyme-DNA complex, the effect of etoposide on the DNA cleavage/religation reaction of Drosophila melanogaster topoisomerase II was studied. Under the conditions employed, etoposide increased levels of enzyme-mediated double-stranded DNA cleavage 5-6-fold and single-stranded cleavage approximately 4-fold. Maximal stimulation was observed at 80-100 microM etoposide with 50% of the maximal effect at approximately 15 microM drug. By employing a topoisomerase II mediated DNA religation assay [Osheroff, N. & Zechiedrich, E.L. (1987) Biochemistry 26, 4303-4309], etoposide was found to stabilize the enzyme-DNA cleavage complex (at least in part) by inhibiting the enzyme's ability to religate cleaved DNA. Moreover, in order for the drug to affect religation, it has to be present at the time of DNA cleavage.  相似文献   

10.
Covalent modification of DNA by antineoplastic agents represents a potent biochemical lesion which can play a major role in drug mechanism of action. The ability to measure levels of DNA covalent modifications in target cells in vivo may, therefore, be seen as the ultimate form of therapeutic drug monitoring. Additionally, elucidation of the structure of critical DNA adducts and definition of their role in tumour cell cytotoxicity will provide more selective targets for rational drug design of new cancer chemotherapeutic agents. High-performance liquid chromatography has contributed significantly to all these areas. In vivo levels of nucleic acid covalent modifications are in the range of 1 in 105–108 nucleotides precluding the use of conventional high-performance liquid chromatographic detection methods. Several classes of natural product anticancer drugs have been shown to bond covalently to nucleic acids under optimal laboratory conditions. These have proved more accessible to high-performance liquid chromatographic analysis because of their lipophilicity and strong UV chromophores. However, the majority of experimental evidence to date suggests that with the exception of mitomycin C and morpholino-anthracyclines these compounds do not exert their primary mechanism of action through nucleic acid covalent modification. DNA adducts of alkylating and platinating agents are more difficult to detect by high-performance liquid chromatography and can be chemically unstable. These compounds interact with DNA on the basis of chemical kinetics. Thus, the principle sites of attachment tend to be with the most nucleophilic base (guanine) at its most reactive centre (N-7 position). Limited in vivo high-performance liquid chromatographic studies with all classes of anticancer drugs indicate a much more complex pattern of adductation than would have been anticipated from in vitro studies alone. Some of these differences are probably due to methodological artefacts but these studies stress the need for sensitive detection methods and reliable sample preparation (nucleic acid extraction and digestion techniques) when attempting to determine nucleic acid covalent modifications by anticancer drugs.  相似文献   

11.
Hao Yang 《FEBS letters》2009,583(9):1548-4944
1-Methyladenine (m1A) alters T·A Watson-Crick to T·m1A Hoogsteen base pair. Owing to its conversion to N6-methyladenine (m6A) at higher temperatures, thermodynamic studies of m1A-containing DNAs using conventional melting methods are subject to the influence of m6A species. In this study, we applied nuclear magnetic resonance spectroscopy to determine the base pairing modes and effect of m1A on thermodynamic stability of double-helical DNA. The observed base pairing modes account for the destabilizing trend which follows the order T·m1A ∼ G·m1A < A·m1A < C·m1A, providing insights into the m1A flipping process and enhancing our understandings of the mutagenicity of m1A.  相似文献   

12.
Normal human embryonic lung fibroblasts WI-38 differentiate spontaneously along the cell lineage mitotic fibroblasts (MF) I, II, and III and postmitotic fibroblasts (PMF) IV, V, VI, and VII in the fibroblast stem cell system in vitro, when appropriate methods are applied. The mitotic fibroblasts can be induced to shift to postmitotic fibroblasts by two treatments with mitomycin C (2× MMC) in a short period of time compared to spontaneous development. Mitotic and postmitotic fibroblast cell types have specific morphological and biochemical properties, e.g., [35S]methionine polypeptide markers in 2D PAGE. Spontaneously arisen and experimentally induced (2× MMC) PMF have the same morphological and biochemical characteristics. Mitotic fibroblasts have 2n DNA and undergo DNA synthesis for reduplication. Postmitotic cells undergo, on average, two rounds of DNA synthesis for endoreduplication (polyploidization). Spontaneously arisen and experimentally induced postmitotic populations are composed of postmitotic fibroblasts PMF IV, V, and VI with 2n, 4n, and 8n DNA. DNA synthesis of mitotic and postmitotic WI-38 cell populations may be regulated by the expression of Fos and Jun proteins. The Fos level of MFs was higher by a factor of 15-24 and the Jun level of MFs by a factor of 4.2-6.3 than those of spontaneously arisen PMFs. In 2× MMC-induced PMFs, the Fos level was about 4.4-7.5 times higher and the Jun level 1.7-3.3 times higher than that of spontaneously arisen PMFs. The down-regulation of these two parameters is a normal event in the development of mitotic to postmitotic WI-38 fibroblasts in the fibroblast stem cell system and is not related to cellular aging.  相似文献   

13.
Summary Some physico-chemical properties of the DNAs released from the actinophages SH3, SH10, SH11, and SH12 are described. The four phage DNAs have a linear double-stranded secondary structure and are unique with respect to their high G·C contents which, from melting studies and buoyant density experiments, were found to be in the range of 68–73 mol-%. The DNA molecular weights were determined by sedimentation velocity experiments and by electron microscopic length measurements, the mean values of the two corresponding data sets being 34.0·106 (SH3), 26.7·106 (SH10), 26.1·106 (SH11), and 28.7·106 (SH12) with a mean relative error of ±5%. From different observations it was concluded that SH10 DNA, and possibly also SH11 and SH12 DNA, have cohesive ends and can undergo intramolecular or intermolecular association to form ring-like monomers or linear and ring-like multimers. Cleavage of the DNAs of SH3, SH10, SH11, and SH12 by EcoRI restriction endonuclease delivered two, one, zero, and two cleavage sites, respectively, and by BamHI restriction endonuclease eight, zero, zero, and zero cleavage sites, respectively.  相似文献   

14.
Circular dichroism (CD) and UV/Visible absorption (UV/Vis) spectroscopy techniques were used to investigate the interaction between heparin and chloroquine, an antimalarial drug that has shown potential as an anti-prion agent. CD spectra of rac-chloroquine upon addition of heparin provide evidence of glycosaminoglycan (GAG) binding, support recent findings suggesting that interactions between heparin and antimalarial drugs are largely due to electrostatic interactions, and represent the first reported GAG-induced CD signal of a bicyclic, aromatic compound. The association constant (∼103 M−1) between chloroquine and heparin was calculated from a UV titration curve and provided additional insight into the nature of the association between these two compounds.  相似文献   

15.
In an increasing number of cases, a deeper understanding of the biochemical basis for idiosyncratic adverse drug reactions (IADRs) has aided to replace a vague perception of a chemical class effect with a sharper picture of individual molecular peculiarity. Considering that IADRs are too complex to duplicate in a test tube, and their idiosyncratic nature precludes prospective clinical studies, it is currently impossible to predict which new drugs will be associated with a significant incidence of toxicity. Because it is now widely appreciated that reactive metabolites, as opposed to the parent molecules from which they are derived, are responsible for the pathogenesis of some IADRs, the propensity of drug candidates to form reactive metabolites is generally considered a liability. Procedures have been implemented to monitor reactive‐metabolite formation in discovery with the ultimate goal of eliminating or minimizing the liability via rational structural modification of the problematic chemical series. While such mechanistic studies have provided retrospective insight into the metabolic pathways which lead to reactive metabolite formation with toxic compounds, their ability to accurately predict the IADR potential of new drug candidates has been challenged. There are several instances of drugs that form reactive metabolites, but only a fraction thereof cause toxicity. This review article will outline current approaches to evaluate bioactivation potential of new compounds with particular emphasis on the advantages and limitation of these assays. Plausible reason(s) for the excellent safety record of certain drugs susceptible to bioactivation will also be explored and should provide valuable guidance in the use of reactive‐metabolite assessments when nominating drug candidates for development.  相似文献   

16.
Computer simulations have been demonstrated to be important for unraveling atomic mechanisms in biological systems. In this study, we show how combining unbiased molecular dynamic simulations with appropriate analysis tools can successfully describe metal-based drug interactions with DNA. To elucidate the noncovalent affinity of cisplatin’s family to DNA, we performed extensive all-atom molecular dynamics simulations (3.7 μs total simulation length). The results show that the parent drug, cisplatin, has less affinity to form noncovalent adducts in the major groove than its aquo complexes. Furthermore, the relative position in which the drugs enter the major groove is dependent on the compound’s net charge. Based on the simulations, we estimated noncovalent binding free energies through the use of Markov state models. In addition, and to overcome the lack of experimental information, we employed two additional methods: Molecular Mechanics Poisson-Boltzmann Surface Area (MMPB-SA) and steered molecular dynamics with the Jarzynski estimator, with an overall good agreement between the three methods. All complexes show interaction energies below 3 kcal/mol with DNA but the charged hydrolysis products have slightly more favorable binding free energies than the parent drug. Moreover, this study sets the precedent for future unbiased DNA-ligand simulations of more complex binders.  相似文献   

17.
DNA obtained by a gentle lysis procedure from adult Drosophila melanogaster was analyzed by sucrose gradient sedimentation. The major portion of the DNA has an estimated weight of at least 5–10×109 daltons. All of the ribosomal genes are present in this high molecular weight DNA in adult males with one nucleolus organizer or in adult females with two nucleolus organizers as shown by hybridizing fractions of the gradient with ribosomal RNA. In female adults with one nucleolus organizer instead of the usual two, 68% of the ribosomal genes are found in high molecular weight DNA and 32% are found in DNA of smaller size (3×108 daltons). We propose that these latter genes are not integrated into the DNA of the chromosome.  相似文献   

18.
The chemical carcinogen (+)-anti BPDE preferentially binds covalently to the guanine base in the minor groove of DNA. Fluorescence spectroscopic studies have shown that the BPDE molecules bound to DNA can interact in their photo-excited state giving strong excimer fluorescence when bound to poly(dGdC) · poly(dGdC). It was suggested that the formation of such excited state complexes is most probable when the two (+)-anti-BPDE bind to guanines of adjacent base pairs on the two different strands of the DNA. In the present work a model for such an excimer forming DNA-BPDE double adduct system has been constructed and shown to be stable over a 300 ps molecular dynamics simulation in a water box. The model is a d(CG)3 · d(CG)3 molecule with two BPDE molecules bound to the guanines at the 4th position on each strand, located in the minor groove and each oriented towards the 5 end of the modified strand, respectively. The results of 300 ps MD simulation show that the two BPDE chromophores exhibited on the average a relative geometry favourable for excimer formation. The local structure at the adduct position was considerably distorted and the helix axis was bent. The modified bases were found to be paired through a stable single non-Watson Crick type of hydrogen bond. Correspondence to: A. Gräslund  相似文献   

19.
Bacterial type IV pili are essential for adhesion to surfaces, motility, microcolony formation, and horizontal gene transfer in many bacterial species. These polymers are strong molecular motors that can retract at two different speeds. In the human pathogen Neisseria gonorrhoeae speed switching of single pili from 2 µm/s to 1 µm/s can be triggered by oxygen depletion. Here, we address the question how proton motive force (PMF) influences motor speed. Using pHluorin expression in combination with dyes that are sensitive to transmembrane ΔpH gradient or transmembrane potential ΔΨ, we measured both components of the PMF at varying external pH. Depletion of PMF using uncouplers reversibly triggered switching into the low speed mode. Reduction of the PMF by ≈ 35 mV was enough to trigger speed switching. Reducing ATP levels by inhibition of the ATP synthase did not induce speed switching. Furthermore, we showed that the strictly aerobic Myxococcus xanthus failed to move upon depletion of PMF or oxygen, indicating that although the mechanical properties of the motor are conserved, its regulatory inputs have evolved differently. We conclude that depletion of PMF triggers speed switching of gonococcal pili. Although ATP is required for gonococcal pilus retraction, our data indicate that PMF is an independent additional energy source driving the high speed mode.  相似文献   

20.
DNA-processing enzymes, such as the topoisomerases (tops), represent major targets for potent anticancer (and antibacterial) agents. The drugs kill cells by poisoning the enzymes' catalytic cycle. Understanding the molecular details of top poisoning is a fundamental requisite for the rational development of novel, more effective antineoplastic drugs. In this connection, sequence-specific recognition of the top-DNA complex is a key step to preferentially direct the action of the drugs onto selected genomic sequences. In fact, the (reversible) interference of drugs with the top-DNA complex exhibits well-defined preferences for DNA bases in the proximity of the cleavage site, each drug showing peculiarities connected to its structural features. A second level of selectivity can be observed when chemically reactive groups are present in the structure of the top-directed drug. In this case, the enzyme recognizes or generates a unique site for covalent drug-DNA binding. This will further subtly modulate the drug's efficiency in stimulating DNA damage at selected sites. Finally, drugs can discriminate not only among different types of tops, but also among different isoenzymes, providing an additional level of specific selection. Once the molecular basis for DNA sequence-dependent recognition has been established, the above-mentioned modes to generate selectivity in drug poisoning can be rationally exploited, alone or in combination, to develop tailor-made drugs targeted at defined loci in cancer cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号