首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have investigated the energy landscape of the bacterial photosynthetic peripheral light-harvesting complex LH2 of purple bacterium Rhodopseudomonas acidophila by monitoring sequences of fluorescence spectra of single LH2 assemblies, at room temperature, with different excitation intensities as well as at elevated temperatures, utilizing a confocal microscope. The fluorescence peak wavelength of individual LH2 complexes was found to abruptly move between quasi-stable levels differing by up to 30 nm. These spectral shifts either to the blue or to the red were accompanied by a broadening and decrease of the intensity of the fluorescence spectrum. The frequency and size of these fluorescence peak movements were found to increase linearly with excitation intensity. Using the modified Redfield theory, changes in the realization of the static disorder accounted for the observed changes in spectral shape and intensity. Long lifetimes of the quasi-stable states suggest large free energy barriers between the different realizations.  相似文献   

2.
We have investigated the energy landscape of the bacterial photosynthetic peripheral light-harvesting complex LH2 of purple bacterium Rhodopseudomonas acidophila by monitoring sequences of fluorescence spectra of single LH2 assemblies, at room temperature, with different excitation intensities as well as at elevated temperatures, utilizing a confocal microscope. The fluorescence peak wavelength of individual LH2 complexes was found to abruptly move between long-lived quasi-stable levels differing by up to 30 nm. The frequency and size of these fluorescence peak movements were found to increase linearly with the excitation intensity. These spectral shifts either to the blue or to the red were accompanied by a broadening and decrease of the intensity of the fluorescence spectrum. The probability for a particle to undergo significant spectral shift in either direction was found to be roughly the same. Using the modified Redfield theory, the observed changes in spectral shape and intensity were accounted for by changes in the realization of the static disorder. Long lifetimes of the quasi-stable states suggest large energetic barriers between the states characterized by different emission spectra.  相似文献   

3.
4.
We have characterized the influence of the protein environment on the spectral properties of the bacteriochlorophyll (Bchl) molecules of the peripheral light-harvesting (or LH2) complex from Rhodobacter sphaeroides. The spectral density functions of the pigments responsible for the 800 and 850 nm electronic transitions were determined from the temperature dependence of the Bchl absorption spectra in different environments (detergent micelles and native membranes). The spectral density function is virtually independent of the hydrophobic support that the protein experiences. The reorganization energy for the B850 Bchls is 220 cm(-1), which is almost twice that of the B800 Bchls, and its Huang-Rhys factor reaches 8.4. Around the transition point temperature, and at higher temperatures, both the static spectral inhomogeneity and the resonance interactions become temperature-dependent. The inhomogeneous distribution function of the transitions exhibits less temperature dependence when LH2 is embedded in membranes, suggesting that the lipid phase protects the protein. However, the temperature dependence of the fluorescence spectra of LH2 cannot be fitted using the same parameters determined from the analysis of the absorption spectra. Correct fitting requires the lowest exciton states to be additionally shifted to the red, suggesting the reorganization of the exciton spectrum.  相似文献   

5.
Single-molecule spectroscopy was employed to elucidate the fluorescence spectral heterogeneity and dynamics of individual, immobilized trimeric complexes of the main light-harvesting complex of plants in solution near room temperature. Rapid reversible spectral shifts between various emitting states, each of which was quasi-stable for seconds to tens of seconds, were observed for a fraction of the complexes. Most deviating states were characterized by the appearance of an additional, red-shifted emission band. Reversible shifts of up to 75 nm were detected. By combining modified Redfield theory with a disordered exciton model, fluorescence spectra with peaks between 670 nm and 705 nm could be explained by changes in the realization of the static disorder of the pigment-site energies. Spectral bands beyond this wavelength window suggest the presence of special protein conformations. We attribute the large red shifts to the mixing of an excitonic state with a charge-transfer state in two or more strongly coupled chlorophylls. Spectral bluing is explained by the formation of an energy trap before excitation energy equilibration is completed.  相似文献   

6.
Duy C  Fitter J 《Biophysical journal》2006,90(10):3704-3711
In a case study on five homologous alpha-amylases we analyzed the properties of unfolded states as obtained from treatments with GndHCl and with elevated temperatures. In particular the wavelength of the tryptophan fluorescence emission peak (lambda(max)) is a valuable parameter to characterize properties of the unfolded state. In all cases with a typical red shift of the emission spectrum occurring during structural unfolding we observed a larger magnitude of this shift for GndHCl-induced unfolding as compared to thermal unfolding. Although a quantitative relation between aggregation and reduction of the unfolding induced red shifts cannot be given, our data indicate that protein aggregation contributes significantly to smaller magnitudes of red shifts as observed during thermal unfolding. In addition, other properties of the unfolded states, most probable structural compactness or simply differences in the conformational scrambling, also affect the magnitude of red shifts. For the irreversible unfolding alpha-amylases studied here, transition temperatures and magnitudes of red shifts are strongly depending on heating rates. Lower protein concentrations and smaller heating rates lead to larger red shifts upon thermal unfolding, indicating that under these conditions the protein aggregation is less pronounced.  相似文献   

7.
Two types of peripheral light-harvesting complexes LH2 (B800–850) from photosynthetic purple bacterium Allochromatium minutissimum were studied. First type containing carotenoids was prepared from wild type cells. The other one was obtained from carotenoid depleted cells grown with diphenylamine. We have shown that under laser femtosecond excitation within absorption 1200–1500 nm wavelength range the two-photon excitation of LH2 complexes takes place. This can be observed as fluorescence of bacteriochlorophyll (BChl) spectral form B850 (BChl molecules of circular aggregate with strong exciton interaction in 850 nm spectral domain). LH2 fluorescence excitation spectra under two-photon excitation are the same for carotenoid-containing and carotenoidless preparations. In both cases the broad band with peak near 1350 (675) nm (FWHM ~ 240 (120) nm) was found. It is concluded that the broad band with peak near 1350 (675) nm in two-photon excitation spectra of LH2 complexes from Allochromatium minutissimum cannot be interpreted as two-photon excitation band of the optically forbidden S0 → S1 transition of carotenoids (rhodopin). Possible nature of this band is discussed.  相似文献   

8.
This work presents a comparative study of the frequencies of spectral jumping of individual light-harvesting complexes of six different types: LH2 of Rhodopseudomonas acidophila, Rhodobacter sphaeroides, and Rhodospirillum molischianum; LH1 of Rhodobacter sphaeroides; and two "domain swap mutants" of LH2 of Rhodobacter sphaeroides: PACLH1 and PACLH2mol, in which the alpha-polypeptide C-terminus is exchanged with the corresponding sequence from LH1 of Rhodobacter sphaeroides or LH2 of Rhodospirillum molischianum, respectively. The quasistable states of fluorescence peak wavelength that were previously observed for the LH2 of Rps. acidophila were confirmed for other species. We also observed occurrences of extremely blue-shifted spectra, which were associated with reversible bleaching of one of the chromophore rings. Different jumping behavior is observed for single complexes of different types investigated with the same equivalent excitation intensity. The differences in spectral diffusion are associated with subtle differences of the binding pocket of B850 pigments and the structural flexibility of the different types of complexes.  相似文献   

9.
In this work we present and discuss the single-molecule fluorescence spectra of a variety of species of light-harvesting complexes: LH2 of Rhodopseudomonas acidophila, Rhodobacter sphaeroides, and Rhodospirillum molischianum and LH1 of Rhodobacter sphaeroides. The emission spectrum of these complexes varies as a function of time as was described in earlier work. For each type of complex, we observe a pronounced and well-reproducible characteristic relationship between the fluorescence spectral parameters of the peak wavelength, width, and asymmetry. This dependence for the LH2 complexes can be quantitatively explained on the basis of a disordered exciton model by varying the static disorder and phonon coupling parameters. In addition, a correlation of the pigment site energies has to be assumed to interpret the behavior of the LH1 complex.  相似文献   

10.
The ability to dissipate large fractions of their absorbed light energy as heat is a vital photoprotective function of the peripheral light-harvesting pigment–protein complexes in photosystem II of plants. The major component of this process, known as qE, is characterised by the appearance of low-energy (red-shifted) absorption and fluorescence bands. Although the appearance of these red states has been established, the molecular mechanism, their site and particularly their involvement in qE are strongly debated. Here, room-temperature single-molecule fluorescence spectroscopy was used to study the red emission states of the major plant light-harvesting complex (LHCII) in different environments, in particular conditions mimicking qE. It was found that most states correspond to peak emission at around 700 nm and are unrelated to energy dissipative states, though their frequency of occurrence increased under conditions that mimicked qE. Longer-wavelength emission appeared to be directly related to energy dissipative states, in particular emission beyond 770 nm. The ensemble average of the red emission bands shares many properties with those obtained from previous bulk in vitro and in vivo studies. We propose the existence of at least three excitation energy dissipating mechanisms in LHCII, each of which is associated with a different spectral signature and whose contribution to qE is determined by environmental control of protein conformational disorder. Emission at 700 nm is attributed to a conformational change in the Lut 2 domain, which is facilitated by the conformational change associated with the primary quenching mechanism involving Lut 1.  相似文献   

11.
In this study, gene sequences coding for the light-harvesting (LH) 2 polypeptides from a thermophilic purple sulfur bacterium Thermochromatium tepidum are reported and characterization of the LH2 complex is described. Three sets of pucBA genes have been identified, and the gene products have been analyzed by electrophoresis and reversed-phase chromatography. The result shows that all of the genes are expressed but the distribution of the expression is not uniform. The gene products undergo post-translational modification, where two of the β-polypeptides appear to be N-terminally methylated. Absorption spectrum of the purified LH2 complex exhibits Q y transitions at 800 and 854?nm in dodecyl β-maltopyranoside solution, and the circular dichroism spectrum shows a “molischianum”-like characteristic. No spectral change was observed for the LH2 when the bacterium was cultured under different conditions of light intensity. In lauryl dimethylamine N-oxide (LDAO) solution, significant changes in the absorption spectrum were observed. The B850 peak decreased and blue-shifted with increasing the LDAO concentration, whereas the B800 intensity increased without change in the peak position. The spectral changes can be partially or almost completely reversed by addition of metal ions, and the divalent cations seem to be more effective. The results indicate that ionic interactions may exist between LH2, detergent molecules and metal ions. Possible mechanisms involved in the detergent- and cation-induced spectral changes are discussed.  相似文献   

12.
The selectively red excited emission spectrum, at room temperature, of the in vitro reconstituted Lhca4, has a pronounced non-equilibrium distribution, leading to enhanced emission from the directly excited low-energy pigments. Two different emitting forms (or states), with maximal emission at 713 and 735nm (F713 and F735) and unusual spectral properties, have been identified. Both high-energy states are populated when selective excitation is into the F735 state and the fluorescence anisotropy spectrum attains the value of 0.3 in the wavelength region where both emission states are present. This indicates that the two states are on the same Lhca4 complex and have transition dipoles with similar orientation.  相似文献   

13.
We have recorded fluorescence-excitation and emission spectra from single LH2 complexes from Rhodopseudomonas (Rps.) acidophila. Both types of spectra show strong temporal spectral fluctuations that can be visualized as spectral diffusion plots. Comparison of the excitation and emission spectra reveals that for most of the complexes the lowest exciton transition is not observable in the excitation spectra due to the cutoff of the detection filter characteristics. However, from the spectral diffusion plots we have the full spectral and temporal information at hand and can select those complexes for which the excitation spectra are complete. Correlating the red most spectral feature of the excitation spectrum with the blue most spectral feature of the emission spectrum allows an unambiguous assignment of the lowest exciton state. Hence, application of fluorescence-excitation and emission spectroscopy on the same individual LH2 complex allows us to decipher spectral subtleties that are usually hidden in traditional ensemble spectroscopy.  相似文献   

14.
We have recorded fluorescence-excitation and emission spectra from single LH2 complexes from Rhodopseudomonas (Rps.) acidophila. Both types of spectra show strong temporal spectral fluctuations that can be visualized as spectral diffusion plots. Comparison of the excitation and emission spectra reveals that for most of the complexes the lowest exciton transition is not observable in the excitation spectra due to the cutoff of the detection filter characteristics. However, from the spectral diffusion plots we have the full spectral and temporal information at hand and can select those complexes for which the excitation spectra are complete. Correlating the red most spectral feature of the excitation spectrum with the blue most spectral feature of the emission spectrum allows an unambiguous assignment of the lowest exciton state. Hence, application of fluorescence-excitation and emission spectroscopy on the same individual LH2 complex allows us to decipher spectral subtleties that are usually hidden in traditional ensemble spectroscopy.  相似文献   

15.
Makio Yokono  Seiji Akimoto 《BBA》2008,1777(4):379-387
Photosystems must efficiently dissipate absorbed light energy under freezing conditions. To clarify the energy dissipation mechanisms, we examined energy transfer and dissipation dynamics in needles of the evergreen plant Taxus cuspidata by time-resolved fluorescence spectroscopy. In summer and autumn, the energy transfer processes were similar to those reported in other higher plants. However, in winter needles, fluorescence lifetimes became shorter not only in PSII but also in PSI, indicating energy dissipation in winter needles. In addition, almost the same fluorescence spectra were obtained with different excitation wavelengths. In contrast, the fluorescence spectrum showed a large difference due to excitation wavelength in spring needles. The fluorescence spectrum of spring needles in 550-nm excitation showed similar spectra to that of winter needles, however, red-chlorophyll fluorescence was not observed in chlorophyll excitation. These observations suggest that some complexes with some kind of red-shifted carotenoid and red-chlorophyll unlink from the core complex in spring. Seasonal changes of excitation energy dynamics are also discussed in relation to changes in thylakoid stacking.  相似文献   

16.
Structural transition can be induced in charged micelles by increasing the ionic strength of the medium. We have monitored the organization and dynamics of the functionally important tryptophan residues of gramicidin in spherical and rod-shaped sodium dodecyl sulfate micelles utilizing a combination of wavelength-selective fluorescence and related fluorescence approaches. Our results show that tryptophans in gramicidin, present in the single-stranded beta(6.3) conformation, experience slow solvent relaxation giving rise to red edge excitation shift in spherical and rod-shaped micelles. In addition, changes in fluorescence polarization with increasing excitation or emission wavelength reinforce that the gramicidin tryptophans are localized in motionally restricted regions of these micelles. Fluorescence quenching experiments using acrylamide as a quencher of tryptophan fluorescence show that there is reduced water penetration in rod-shaped micelles. Taken together, we show that gramicidin conformation and dynamics is sensitive to the salt-induced structural transition in charged micelles. In addition, these results demonstrate that deformation of the host assembly could modulate protein conformation and dynamics.  相似文献   

17.
Cyanobacteriochromes (CBCRs) are linear tetrapyrrole bilin-binding photoreceptors of cyanobacteria that exhibit high spectral diversity, gaining attention in optogenetics and bioimaging applications. Several engineering studies on CBCRs were attempted, especially for designing near-infrared (NIR) fluorescent proteins with longer fluorescence wavelengths. However, despite continuous efforts, a key component regulating fluorescence emission property in CBCRs is still poorly understood. As a model system, we focused on red/green CBCR Slr1393g3, from the unicellular cyanobacterium Synechocystis sp. PCC 6803 to engineer Pr to get far-red light-emitting property. Energy profiling and pairwise structural comparison of Slr1393g3 variants effectively reveal the mutations that are critical to the fluorescence changes. H497 seems to play a key role in stabilizing the chromophore environment, especially the α3 helix, while H495, T499, and Q502 are potential key residues determining fluorescence emission peak wavelength. We also found that mutations of α2 and α4 helical regions are closely related to the chromophore binding stability and likely affect fluorescence properties. Taken together, our computational analysis suggests that the fluorescence of Slr1393g3 is mainly controlled by the stabilization of the chromophore binding pocket. The predicted key residues potentially regulating the fluorescence emission property of a red/green CBCR will be advantageous for designing improved NIR fluorescent protein when combined with in vitro molecular evolution approaches.  相似文献   

18.
Mizuno H  Sawano A  Eli P  Hama H  Miyawaki A 《Biochemistry》2001,40(8):2502-2510
The biochemical and biophysical properties of a red fluorescent protein from a Discosoma species (DsRed) were investigated. The recombinant DsRed expressed in E. coli showed a complex absorption spectrum that peaked at 277, 335, 487, 530, and 558 nm. Excitation at each of the absorption peaks produced a main emission peak at 583 nm, whereas a subsidiary emission peak at 500 nm appeared with excitation only at 277 or 487 nm. Incubation of E. coli or the protein at 37 degrees C facilitated the maturation of DsRed, resulting in the loss of the 500-nm peak and the enhancement of the 583-nm peak. In contrast, the 500-nm peak predominated in a mutant DsRed containing two amino acid substitutions (Y120H/K168R). Light-scattering analysis revealed that DsRed proteins expressed in E. coli and HeLa cells form a stable tetramer complex. DsRed in HeLa cells grown at 37 degrees C emitted predominantly at 583 nm. The red fluorescence was imaged using a two-photon laser (Nd:YLF, 1047 nm) as well as a one-photon laser (He:Ne, 543.5 nm). When fused to calmodulin, the red fluorescence produced an aggregation pattern only in the cytosol, which does not reflect the distribution of calmodulin. Despite the above spectral and structural complexity, fluorescence resonance energy transfer (FRET) between Aequorea green fluorescent protein (GFP) variants and DsRed was achieved. Dynamic changes in cytosolic free Ca2+ concentrations were observed with red cameleons containing yellow fluorescent protein (YFP), cyan fluorescent protein (CFP), or Sapphire as the donor and RFP as the acceptor, using conventional microscopy and one- or two-photon excitation laser scanning microscopy. Particularly, the use of the Sapphire-DsRed pair rendered the red cameleon tolerant of acidosis occurring in hippocampal neurons, because both Sapphire and DsRed are extremely pH-resistant.  相似文献   

19.
以樟树果实为材料,运用800~400 nm光谱扫描分析了pH值、金属离子、加热时间及温度、光照等稳定性因子对樟树果实红色素吸收光谱的影响。结果表明:最大吸收波长是517 nm,酸性条件对色素吸收光谱无明显影响,当pH为8.6的强碱性环境,红色素结构变化,最大吸收峰漂移至402 nm;100℃内,色素性质稳定,当加热时间延长至120 min,最大吸收峰在512.5 nm;红色素耐光性较好,但避光更利于保存;金属离子对红色素吸收光谱的影响强弱为:Fe3+>Al3+>Mg2+>Ca2+>Na+>K+,Fe3+短时内引起色素变色、发生沉淀,最大吸收峰漂移,浓度越高影响越大,Na+、K+对红色素吸收光谱无明显影响。  相似文献   

20.
The fluorescence spectra of 2-(p-toluidinylnaphthalene)-6-sulfonate associated with β-lactoglobulin, β-casein. and bovine and human serum albumins are shown to depend on excitation wavelength. A long-wave shift of the spectra is observed at the long-wave edge excitation, reaching 10 nm and above. A similar phenomenon is found in glucose glass and in glycerol at + 1°C, i.e., in systems with delayed dipolar solvent relaxation, but not in liquid solutions. This phenomenon is proposed to be based on relaxation processes in the excited state. There exists a distribution of chromophore microstates with different interactions with surrounding groups which results in heterogeneous broadening of the electronic spectra and allows photoselection of a part of this distribution, being characterized by a low transition energy. The fast structural relaxation results in an altered distribution and, if this is the case, the effect of edge excitation of fluorescence spectra is not observed. If the structural relaxation during the excited state lifetime is absent, this effect is maximal. This interpretation is in agreement with results on the influence of red edge excitation on the low-temperature fluorescence spectra of dyes and with the data on time-resolved nanosecond fluorescence spectroscopy. The results of this work strongly support the significant dye fluorescence spectral shifts on protein binding, being determined not only by polarity changes in their environment, but also by relaxation properties of protein groups in this environment. These results also indicate that on the nanosecond time scale, the structural relaxation around the excited chromophore in proteins may be incomplete.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号