首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The proinflammatory cytokine tumor necrosis factor (TNF) binds two distinct plasma membrane receptors, TNFR1 and TNFR2. We have produced different receptor mutants fused with enhanced green fluorescent protein to study their membrane dynamics by fluorescence correlation spectroscopy (FCS). TNFR1 mutants show diffusion constants of approximately 1.2 × 10− 9 cm2/s and a broad distribution of diffusion times, which is hardly affected by ligand binding. However, cholesterol depletion enhances their diffusion, suggesting a constitutive affinity to cholesterol rich membrane microdomains. In contrast, TNFR2 and mutants thereof diffuse rather fast (D? = 3.1 × 10− 9 cm2/s) with a marked reduction after 30 min of TNF treatment (D? = 0.9 × 10− 9 cm2/s). This reduction cannot be explained by the formation of higher ordered receptor clusters, since the fluorescence intensity of TNF treated receptors indicate the presence of a few receptor molecules per complex only. Together, these data point to a topological segregation of the two TNF receptors in different microcompartments of the plasma membrane independent of the cytoplasmic signaling domains of the receptors.  相似文献   

2.
We report on the first, to our knowledge, successful detection of a fluorescent unnatural amino acid (fUAA), Lys(BODIPYFL), incorporated into a membrane protein (the muscle nicotinic acetylcholine receptor, nAChR) in a living cell. Xenopus oocytes were injected with a frameshift-suppressor tRNA, amino-acylated with Lys(BODIPYFL) and nAChR (α/β19′GGGU/γ/δ) mRNAs. We measured fluorescence from oocytes expressing nAChR β19′Lys(BODIPYFL), using time-resolved total internal reflection fluorescence microscopy. Under conditions of relatively low receptor density (<0.1 receptors/μm2), we observed puncta with diffraction-limited profiles that were consistent with the point-spread function of our microscope. Furthermore, diffraction-limited puncta displayed step decreases in fluorescence intensity, consistent with single-molecule photobleaching. The puncta densities agreed with macroscopic ACh-induced current densities, showing that the fUAA was incorporated, and that receptors were functional. Dose-response relations for the nAChR β19′Lys(BODIPYFL) receptors were similar to those for wild-type receptors. We also studied nAChR β19′Lys(BODIPYFL) receptors labeled with α-bungarotoxin monoconjugated with Alexa488 (αBtxAlexa488). The nAChR has two αBtx binding sites, and puncta containing the Lys(BODIPYFL) labeled with αBtxAlexa488 yielded the expected three discrete photobleaching steps. We also performed positive control experiments with a nAChR containing enhanced green fluorescent protein in the γ-subunit M3-M4 loop, which confirmed our nAChR β19′Lys(BODIPYFL) measurements. Thus, we report on the cell-based single-molecule detection of nAChR β19′Lys(BODIPYFL).  相似文献   

3.
Fluorescence correlation spectroscopy (FCS) and photon counting histogram (PCH) analysis are powerful ways to study mobility and stoichiometry of G protein coupled receptor complexes, within microdomains of single living cells. However, relating these properties to molecular mechanisms can be challenging. We investigated the influence of β-arrestin adaptors and endocytosis mechanisms on plasma membrane diffusion and particle brightness of GFP-tagged neuropeptide Y (NPY) receptors. A novel GFP-based bimolecular fluorescence complementation (BiFC) system also identified Y1 receptor-β-arrestin complexes. Diffusion co-efficients (D) for Y1 and Y2-GFP receptors in HEK293 cell plasma membranes were 2.22 and 2.15 × 10(-9)cm(2)s(-1) respectively. At a concentration which promoted only Y1 receptor endocytosis, NPY treatment reduced Y1-GFP motility (D 1.48 × 10(-9)cm(2)s(-1)), but did not alter diffusion characteristics of the Y2-GFP receptor. Agonist induced changes in Y1 receptor motility were inhibited by mutations (6A) which prevented β-arrestin recruitment and internalisation; conversely they became apparent in a Y2 receptor mutant with increased β-arrestin affinity. NPY treatment also increased Y1 receptor-GFP particle brightness, changes which indicated receptor clustering, and which were abolished by the 6A mutation. The importance of β-arrestin recruitment for these effects was illustrated by reduced lateral mobility (D 1.20-1.33 × 10(-9)cm(2)s(-1)) of Y1 receptor-β-arrestin BiFC complexes. Thus NPY-induced changes in Y receptor motility and brightness reflect early events surrounding arrestin dependent endocytosis at the plasma membrane, results supported by a novel combined BiFC/FCS approach to detect the underlying receptor-β-arrestin signalling complex.  相似文献   

4.
Objectives: Extensive research has been dedicated to elucidating the mechanisms of signal transduction through different G protein-coupled receptors (GPCRs). However, relatively little is known about the regulation of receptor movement within the cell membrane upon ligand binding. In this study we focused our attention on the thyrotropin-releasing hormone (TRH) receptor that typically couples to Gq/11 proteins.

Methods: We monitored receptor diffusion in the plasma membrane of HEK293 cells stably expressing yellow fluorescent protein (YFP)-tagged TRH receptor (TRHR-YFP) by fluorescence recovery after photobleaching (FRAP).

Results: FRAP analysis indicated that the lateral movement of the TRH receptor was markedly reduced upon TRH binding as the value of its diffusion coefficient fell down by 55%. This effect was prevented by the addition of the TRH receptor antagonist midazolam. We also found that siRNA-mediated knockdown of Gq/11α, Gβ, β-arrestin2 and phospholipase Cβ1, but not of Giα1, β-arrestin1 or G protein-coupled receptor kinase 2, resulted in a significant decrease in the rate of TRHR-YFP diffusion, indicating the involvement of the former proteins in the regulation of TRH receptor behavior. The observed partial reduction of the TRHR-YFP mobile fraction caused by down-regulation of Giα1 and β-arrestin1 suggests that these proteins may also play distinct roles in THR receptor-mediated signaling.

Conclusion: These results demonstrate for the first time that not only agonist binding but also abundance of some signaling proteins may strongly affect TRH receptor dynamics in the plasma membrane.  相似文献   


5.
The G protein-coupled ghrelin receptor GHSR1a is a potential pharmacological target for treating obesity and addiction because of the critical role ghrelin plays in energy homeostasis and dopamine-dependent reward. GHSR1a enhances growth hormone release, appetite, and dopamine signaling through Gq/11, Gi/o, and G12/13 as well as β-arrestin-based scaffolds. However, the contribution of individual G protein and β-arrestin pathways to the diverse physiological responses mediated by ghrelin remains unknown. To characterize whether a signaling bias occurs for GHSR1a, we investigated ghrelin signaling in a number of cell-based assays, including Ca2+ mobilization, serum response factor response element, stress fiber formation, ERK1/2 phosphorylation, and β-arrestin translocation, utilizing intracellular second loop and C-tail mutants of GHSR1a. We observed that GHSR1a and β-arrestin rapidly form metastable plasma membrane complexes following exposure to an agonist, but replacement of the GHSR1a C-tail by the tail of the vasopressin 2 receptor greatly stabilizes them, producing complexes observable on the plasma membrane and also in endocytic vesicles. Mutations of the contiguous conserved amino acids Pro-148 and Leu-149 in the GHSR1a intracellular second loop generate receptors with a strong bias to G protein and β-arrestin, respectively, supporting a role for conformation-dependent signaling bias in the wild-type receptor. Our results demonstrate more balance in GHSR1a-mediated ERK signaling from G proteins and β-arrestin but uncover an important role for β-arrestin in RhoA activation and stress fiber formation. These findings suggest an avenue for modulating drug abuse-associated changes in synaptic plasticity via GHSR1a and indicate the development of GHSR1a-biased ligands as a promising strategy for selectively targeting downstream signaling events.  相似文献   

6.
β-arrestin mediates the desensitization of GPCRs and acts as an adaptor molecule to recruit the receptor complex to clathrin-rich regions. Class-A GPCRs subsequently dissociate from β-arrestin but class-B GPCRs internalize with β-arrestin in the endocytic vesicles. Here the dopamine D2 and D3 receptors, which have similar structural features but different intracellular trafficking properties, were used in an attempt to better understand the structural requirements for the classification of GPCRs. The C-terminus tail of the vasopressin type-2 receptor was added to the ends of D2R and D3R to increase their affinity to β-arrestin. A point mutation was introduced into the DRY motif to change their basal activation levels. Among a battery of constructs in which the C-terminus tail and/or DRY motif was altered, class-B behavior was observed with the constructs whose affinities for β-arrestin were increased complementarily and their signaling was either maintained or regained. In conclusion, the DRY motif and C-terminal tail of the GPCRs determine complementarily their intracellular trafficking behavior by regulating the affinity to β-arrestin and G protein coupling.  相似文献   

7.
β-Arrestin is a scaffold protein that regulates signal transduction by seven transmembrane-spanning receptors. Among other functions it is also critically required for Wnt/β-catenin signal transduction. In the present study we provide for the first time a mechanistic basis for the β-arrestin function in Wnt/β-catenin signaling. We demonstrate that β-arrestin is required for efficient Wnt3a-induced Lrp6 phosphorylation, a key event in downstream signaling. β-Arrestin regulates Lrp6 phosphorylation via a novel interaction with phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P2)-binding protein Amer1/WTX/Fam123b. Amer1 has been shown very recently to bridge Wnt-induced and Dishevelled-associated PtdIns(4,5)P2 production to the phosphorylation of Lrp6. Using fluorescence recovery after photobleaching we show here that β-arrestin is required for the Wnt3a-induced Amer1 membrane dynamics and downstream signaling. Finally, we show that β-arrestin interacts with PtdIns kinases PI4KIIα and PIP5KIβ. Importantly, cells lacking β-arrestin showed higher steady-state levels of the relevant PtdInsP and were unable to increase levels of these PtdInsP in response to Wnt3a. In summary, our data show that β-arrestins regulate Wnt3a-induced Lrp6 phosphorylation by the regulation of the membrane dynamics of Amer1. We propose that β-arrestins via their scaffolding function facilitate Amer1 interaction with PtdIns(4,5)P2, which is produced locally upon Wnt3a stimulation by β-arrestin- and Dishevelled-associated kinases.  相似文献   

8.
Aquaporin-1 (AQP1) is an integral membrane protein that facilitates osmotic water transport across cell plasma membranes in epithelia and endothelia. AQP1 has no known specific interactions with cytoplasmic or membrane proteins, but its recovery in a detergent-insoluble membrane fraction has suggested possible raft association. We tracked the membrane diffusion of AQP1 molecules labeled with quantum dots at an engineered external epitope at frame rates up to 91 Hz and over times up to 6 min. In transfected COS-7 cells, >75% of AQP1 molecules diffused freely over ∼7 μm in 5 min, with diffusion coefficient, D1-3 ∼ 9 × 10−10 cm2/s. In MDCK cells, ∼60% of AQP1 diffused freely, with D1-3 ∼ 3 × 10−10 cm2/s. The determinants of AQP1 diffusion were investigated by measurements of AQP1 diffusion following skeletal disruption (latrunculin B), lipid/raft perturbations (cyclodextrin and sphingomyelinase), and bleb formation. We found that cytoskeletal disruption had no effect on AQP1 diffusion in the plasma membrane, but that diffusion was increased greater than fourfold in protein de-enriched blebs. Cholesterol depletion in MDCK cells greatly restricted AQP1 diffusion, consistent with the formation of a network of solid-like barriers in the membrane. These results establish the nature and determinants of AQP1 diffusion in cell plasma membranes and demonstrate long-range nonanomalous diffusion of AQP1, challenging the prevailing view of universally anomalous diffusion of integral membrane proteins, and providing evidence against the accumulation of AQP1 in lipid rafts.  相似文献   

9.
Wnt ligands trigger the activation of a variety of β-catenin–dependent and β-catenin–independent intracellular signaling cascades. Despite the variations in intracellular signaling, Wnt pathways share the effector proteins frizzled, dishevelled, and β-arrestin. It is unclear how the specific activation of individual branches and the integration of multiple signals are achieved. We hypothesized that the composition of dishevelled–β-arrestin protein complexes contributes to signal specificity and identified CamKII as an interaction partner of the dishevelled–β-arrestin protein complex by quantitative functional proteomics. Specifically, we found that CamKII isoforms interact differentially with the three vertebrate dishevelled proteins. Dvl1 is required for the activation of CamKII and PKC in the Wnt/Ca2+ pathway. However, CamKII interacts with Dvl2 but not with Dvl1, and Dvl2 is necessary to mediate CamKII function downstream of Dvl1 in convergent extension movements in Xenopus gastrulation. Our findings indicate that the different Dvl proteins and the composition of dishevelled–β-arrestin protein complexes contribute to the specific activation of individual branches of Wnt signaling.  相似文献   

10.
New findings show that neurotrophic and antidepressant effects of 5-HT in brain can, in part, be mediated by activation of the 5-HT1A receptor protomer in the hippocampal and raphe FGFR1–5-HT1A heteroreceptor complexes enhancing the FGFR1 signaling. The dynamic agonist modulation of the FGFR1–5-HT1A heteroreceptor complexes and their recruitment of β-arrestin is now determined in cellular models with focus on its impact on 5-HT1AR and FGFR1 homodimerization in the heteroreceptor complexes based on BRET2 assays. The findings show that coagonist treatment with 8-OH-DPAT and FGF2 but not treatment with the 5-HT1A agonist alone markedly increases the BRETmax values and significantly reduces the BRET50 values of 5HT1A homodimerization. The effects of FGF2 or FGF20 with or without the 5-HT1A agonist were also studied on the FGFR1 homodimerization of the heteroreceptor complexes. FGF2 produced a marked and rapid increase in FGFR1 homodimerization which partially declined over a 10 min period. Cotreatment with FGF2 and 5-HT1A agonist blocked this decline in FGFR1 homodimerization. Furthermore, FGF2 alone produced a small increase in the BRET2 signal from the 5-HT1A-β-arrestin2 receptor–protein complex which was additive to the marked effect of 8-OH-DPAT alone. Taken together, the participation of 5-HT1A and FGFR1 homodimers and recruitment of β-arrestin2 was demonstrated in the FGFR1–5-HT1A heteroreceptor complexes upon agonist treatments.  相似文献   

11.
Recent advances in fluorescence localization microscopy have made it possible to image chemically fixed and living cells at 20 nm lateral resolution. We apply this methodology to simultaneously record receptor organization and dynamics on the ventral surface of live RBL-2H3 mast cells undergoing antigen-mediated signaling. Cross-linking of IgE bound to FcεRI by multivalent antigen initiates mast cell activation, which leads to inflammatory responses physiologically. We quantify receptor organization and dynamics as cells are stimulated at room temperature (22°C). Within 2 min of antigen addition, receptor diffusion coefficients decrease by an order of magnitude, and single-particle trajectories are confined. Within 5 min of antigen addition, receptors organize into clusters containing ∼100 receptors with average radii of ∼70 nm. By comparing simultaneous measurements of clustering and mobility, we determine that there are two distinct stages of receptor clustering. In the first stage, which precedes stimulated Ca2+ mobilization, receptors slow dramatically but are not tightly clustered. In the second stage, receptors are tightly packed and confined. We find that stimulation-dependent changes in both receptor clustering and mobility can be reversed by displacing multivalent antigen with monovalent ligands, and that these changes can be modulated through enrichment or reduction in cellular cholesterol levels.  相似文献   

12.
G-protein coupled receptors (GPCRs) have long been known as receptors that activate G protein-dependent cellular signaling pathways. In addition to the G protein-dependent pathways, recent reports have revealed that several ligands called “biased ligands” elicit G protein-independent and β-arrestin-dependent signaling through GPCRs (biased agonism). Several β-blockers are known as biased ligands. All β-blockers inhibit the binding of agonists to the β-adrenergic receptors. In addition to β-blocking action, some β-blockers are reported to induce cellular responses through G protein-independent and β-arrestin-dependent signaling pathways. However, the physiological significance induced by the β-arrestin-dependent pathway remains much to be clarified in vivo. Here, we demonstrate that metoprolol, a β1-adrenergic receptor-selective blocker, could induce cardiac fibrosis through a G protein-independent and β-arrestin2-dependent pathway. Metoprolol, a β-blocker, increased the expression of fibrotic genes responsible for cardiac fibrosis in cardiomyocytes. Furthermore, metoprolol induced the interaction between β1-adrenergic receptor and β-arrestin2, but not β-arrestin1. The interaction between β1-adrenergic receptor and β-arrestin2 by metoprolol was impaired in the G protein-coupled receptor kinase 5 (GRK5)-knockdown cells. Metoprolol-induced cardiac fibrosis led to cardiac dysfunction. However, the metoprolol-induced fibrosis and cardiac dysfunction were not evoked in β-arrestin2- or GRK5-knock-out mice. Thus, metoprolol is a biased ligand that selectively activates a G protein-independent and GRK5/β-arrestin2-dependent pathway, and induces cardiac fibrosis. This study demonstrates the physiological importance of biased agonism, and suggests that G protein-independent and β-arrestin-dependent signaling is a reason for the diversity of the effectiveness of β-blockers.  相似文献   

13.
We have used spot fluorescence photobleaching recovery methods to measure the lateral diffusion of GnRH receptor (GnRHR) fused at its C terminus to green fluorescent protein (GFP) after binding of either GnRH agonists or antagonist. Before ligand binding, GnRHR-GFP exhibited fast rates of lateral diffusion (D = 18 +/- 2.8 x 10(-10)cm2 x sec(-1)) and high values for fractional fluorescence recovery (%R) after photobleaching (73 +/- 1%). Increasing concentrations of agonists, GnRH or D-Ala6-GnRH, caused a dose-dependent slowing of receptor lateral diffusion as well as a decreased fraction of mobile receptors. Increasing concentrations of the GnRH antagonist Antide slowed the rate of receptor diffusion but had no effect on the fraction of mobile receptors, which remained high. To determine whether the decrease in %R caused by GnRH agonists was due, in part, to increased receptor self-association, we measured the fluorescence resonance energy transfer efficiency between GnRHR-GFP and yellow fluorescent protein-GNRHR: There was no energy transfer between GnRHR on untreated cells. Treatment of cells with GnRH agonists led to a concentration-dependent increase in the energy transfer between GnRH receptors to a maximum value of 16 +/- 1%. There was no significant energy transfer between GnRH receptors on cells treated with Antide, even at a concentration of 100 nM. These data provide direct evidence that, before binding of ligand, GnRHR exists as an isolated receptor and that binding of GnRH agonists, but not antagonist, leads to formation of large complexes that exhibit slow diffusion and contain receptors that are self-associated.  相似文献   

14.
Although cell surface metalloendopeptidases degrade neuropeptides in the extracellular fluid to terminate signaling, the function of peptidases in endosomes is unclear. We report that isoforms of endothelin-converting enzyme-1 (ECE-1a–d) are present in early endosomes, where they degrade neuropeptides and regulate post-endocytic sorting of receptors. Calcitonin gene-related peptide (CGRP) co-internalizes with calcitonin receptor-like receptor (CLR), receptor activity-modifying protein 1 (RAMP1), β-arrestin2, and ECE-1 to early endosomes, where ECE-1 degrades CGRP. CGRP degradation promotes CLR/RAMP1 recycling and β-arrestin2 redistribution to the cytosol. ECE-1 inhibition or knockdown traps CLR/RAMP1 and β-arrestin2 in endosomes and inhibits CLR/RAMP1 recycling and resensitization, whereas ECE-1 overexpression has the opposite effect. ECE-1 does not regulate either the resensitization of receptors for peptides that are not ECE-1 substrates (e.g., angiotensin II), or the recycling of the bradykinin B2 receptor, which transiently interacts with β-arrestins. We propose a mechanism by which endosomal ECE-1 degrades neuropeptides in endosomes to disrupt the peptide/receptor/β-arrestin complex, freeing internalized receptors from β-arrestins and promoting recycling and resensitization.  相似文献   

15.
Studying single molecules in a cell has the essential advantage that kinetic information is not averaged out. However, since fluorescence is faint, such studies require that the sample be illuminated with the intense light beam. This causes photodamage of labeled proteins and rapid photobleaching of the fluorophores. Here, we show that a substantial reduction of these types of photodamage can be achieved by imaging samples on coverslips coated with monolayers of silver nanoparticles. The mechanism responsible for this effect is the interaction of localized surface plasmon polaritons excited in the metallic nanoparticles with the transition dipoles of fluorophores of a sample. This leads to a significant enhancement of fluorescence and a decrease of fluorescence lifetime of a fluorophore. Enhancement of fluorescence leads to the reduction of photodamage, because the sample can be illuminated with a dim light, and decrease of fluorescence lifetime leads to reduction of photobleaching because the fluorophore spends less time in the excited state, where it is susceptible to oxygen attack. Fluorescence enhancement and reduction of photobleaching on rough metallic surfaces are usually accompanied by a loss of optical resolution due to refraction of light by particles. In the case of monolayers of silver nanoparticles, however, the surface is smooth and glossy. The fluorescence enhancement and the reduction of photobleaching are achieved without sacrificing the optical resolution of a microscope. Skeletal muscle myofibrils were used as an example, because they contain submicron structures conveniently used to define optical resolution. Small nanoparticles (diameter ∼60 nm) did not cause loss of optical resolution, and they enhanced fluorescence ∼500-fold and caused the appearance of a major picosecond component of lifetime decay. As a result, the sample photobleached ∼20-fold more slowly than the sample on glass coverslips.  相似文献   

16.
The bindings of biogenic polyamines spermine (spm), spermidine (spmd) and synthetic polyamines 3,7,11,15-tetrazaheptadecane·4HCl (BE-333) and 3,7,11,15,19-pentazahenicosane·5HCl (BE-3333) with β-lactoglobulin (β-LG) were determined in aqueous solution. FTIR, UV-vis, CD and fluorescence spectroscopic methods as well as molecular modeling were used to determine the polyamine binding sites and the effect of polyamine complexation on protein stability and secondary structure. Structural analysis showed that polyamines bind β-LG via both hydrophilic and hydrophobic contacts. Stronger polyamine-protein complexes formed with synthetic polyamines than biogenic polyamines, with overall binding constants of Kspm-β-LG = 3.2(±0.6) × 104 M−1, Kspmd-β-LG = 1.8(±0.5) × 104 M−1, KBE-333-β-LG = 5.8(±0.3) × 104 M−1 and KBE-3333-β-LG = 6.2(±0.05) × 104 M−1. Molecular modeling showed the participation of several amino acids in the polyamine complexes with the following order of polyamine-protein binding affinity: BE-3333 > BE-333 > spermine > spermidine, which correlates with their positively charged amino group content. Alteration of protein conformation was observed with a reduction of β-sheet from 57% (free protein) to 55-51%, and a major increase of turn structure from 13% (free protein) to ∼21% in the polyamine-β-LG complexes, indicating a partial protein unfolding.  相似文献   

17.
18.
Identification of cognate ligands for G protein-coupled receptors (GPCRs) provides a starting point for understanding novel regulatory mechanisms. Although GPCR ligands have typically been evaluated through the activation of heterotrimeric G proteins, recent studies have shown that GPCRs signal not only through G proteins but also through β-arrestins. As such, monitoring β-arrestin signaling instead of G protein signaling will increase the likelihood of identifying currently unknown ligands, including β-arrestin-biased agonists. Here, we developed a cell-based assay for monitoring ligand-dependent GPCR-β-arrestin interaction via β-lactamase enzyme fragment complementation. Inter alia, β-lactamase is a superior reporter enzyme because of its cell-permeable fluorescent substrate. This substrate makes the assay non-destructive and compatible with fluorescence-activated cell sorting (FACS). In a reporter cell, complementary fragments of β-lactamase (α and ω) were fused to β-arrestin 2 and GPCR, respectively. Ligand stimulation initiated the interaction of these chimeric proteins (β-arrestin-α and GPCR-ω), and this inducible interaction was measured through reconstituted β-lactamase activity. Utilizing this system, we screened various mammalian tissue extracts for agonistic activities on human bombesin receptor subtype 3 (hBRS3). We purified peptide E as a low-affinity ligand for hBRS3, which was also found to be an agonist for the other two mammalian bombesin receptors such as gastrin-releasing peptide receptor (GRPR) and neuromedin B receptor (NMBR). Successful purification of peptide E has validated the robustness of this assay. We conclude that our newly developed system will facilitate the discovery of GPCR ligands.  相似文献   

19.
Chemokines play crucial roles in combating microbial infection and initiating tissue repair by recruiting neutrophils in a timely and coordinated manner. In humans, no less than seven chemokines (CXCL1, CXCL2, CXCL3, CXCL5, CXCL6, CXCL7, and CXCL8) and two receptors (CXCR1 and CXCR2) mediate neutrophil functions but in a context dependent manner. Neutrophil-activating chemokines reversibly exist as monomers and dimers, and their receptor binding triggers conformational changes that are coupled to G-protein and β-arrestin signaling pathways. G-protein signaling activates a variety of effectors including Ca2+ channels and phospholipase C. β-arrestin serves as a multifunctional adaptor and is coupled to several signaling hubs including MAP kinase and tyrosine kinase pathways. Both G-protein and β-arrestin signaling pathways play important non-overlapping roles in neutrophil trafficking and activation. Functional studies have established many similarities but distinct differences for a given chemokine and between chemokines at the level of monomer vs. dimer, CXCR1 vs. CXCR2 activation, and G-protein vs. β-arrestin pathways. We propose that two forms of the ligand binding two receptors and activating two signaling pathways enables fine-tuned neutrophil function compared to a single form, a single receptor, or a single pathway. We summarize the current knowledge on the molecular mechanisms by which chemokine monomers/dimers activate CXCR1/CXCR2 and how these interactions trigger G-protein/β-arrestin-coupled signaling pathways. We also discuss current challenges and knowledge gaps, and likely advances in the near future that will lead to a better understanding of the relationship between the chemokine-CXCR1/CXCR2-G-protein/β-arrestin axis and neutrophil function.  相似文献   

20.
β-Arrestins are signaling adaptors that bind to agonist-occupied G protein-coupled receptors (GPCRs) and target them for endocytosis; however, the mechanisms regulating receptor/β-arrestin complexes and trafficking in endosomes, remain ill defined. Here we show, in live cells, differential dynamic regulation of endosomal bradykinin B2 receptor (B2R) complexes with either β-arrestin-1 or -2. We find a novel role for MAPK in the B2R/β-arrestin-2 complex formation, receptor trafficking and signaling mediated by an ERK1/2 regulatory motif in the hinge domain of the rat β-arrestin-2 (PET178P), but not rat β-arrestin-1 (PER177P). While the ERK1/2 regulatory motif is conserved between rat and mouse β-arrestin-2, it is surprisingly not conserved in human β-arrestin-2 (PEK178P). However, mutation of lysine 178 to threonine is sufficient to confer MAPK sensitivity to the human β-arrestin-2. Furthermore, substitution for a phosphomimetic residue in both the rat and the human β-arrestin-2 (T/K178D) significantly stabilizes B2R/β-arrestin complexes in endosomes, delays receptor recycling to the plasma membrane and maintains intracellular MAPK signaling. Similarly, the endosomal trafficking of β2-adrenergic, angiotensin II type 1 and vasopressin V2 receptors was altered by the β-arrestin-2 T178D mutant. Our findings unveil a novel subtype specific mode of MAPK-dependent regulation of β-arrestins in intracellular trafficking and signaling of GPCRs, and suggest differential endosomal receptor/β-arrestin-2 signaling roles among species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号