首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The folding pathway of the small α/β protein GB1 has been extensively studied during the past two decades using both theoretical and experimental approaches. These studies provided a consensus view that the protein folds in a two-state manner. Here, we reassessed the folding of GB1, both by experiments and simulations, and detected the presence of an on-pathway intermediate. This intermediate has eluded earlier experimental characterization and is distinct from the collapsed state previously identified using ultrarapid mixing. Failure to identify the presence of an intermediate affects some of the conclusions that have been drawn for GB1, a popular model for protein folding studies.  相似文献   

2.
Identification of the factors governing the formation of beta-structure independently of the rest of the protein is important for understanding the folding process of protein into a unique native structure. It has been shown that some beta-hairpins can fold autonomously into native-like structures, either in aqueous solution or in the presence of an organic co-solvent. Our aim is to review recent theoretical and experimental studies of folding of beta-structures.  相似文献   

3.
Xylanase has been used in wood pulp bleaching in an effort to reduce chlorine release into the environment and pollution associated with paper production. The three-dimensional structure of xylanase is important to enable better understanding of the enzyme mechanism and to help design a more thermostable xylanase mutant. At the time this work was begun, there was no sequence homologous protein available for traditional sequence-based homology modeling. In order to circumvent this problem, the inverse protein folding approach was undertaken to find a suitable template structure. Model structures of Bacillus circulans xylanase were built based on the data-base search results of related proteins. The model structures were refined and compared to the recently solved xylanase X-ray crystal structure. The overall structural similarity between the theoretical model and experimental structure demonstrate the usefulness of this approach. Disagreement in folding topology, however, warrants further research into the inverse protein folding approach.  相似文献   

4.
Photoswitchable distance constraints in the form of photoisomerizable chemical cross-links offer a general approach to the design of reversibly photocontrolled proteins. To apply these effectively, however, one must have guidelines for the choice of cross-linker structure and cross-linker attachment sites. Here we investigate the effects of varying cross-linker structure on the photocontrol of folding of the Fyn SH3 domain, a well-studied model protein. We develop a theoretical framework based on an explicit-chain model of protein folding, modified to include detailed model linkers, that allows prediction of the effect of a given linker on the free energy of folding of a protein. Using this framework, we were able to quantitatively explain the experimental result that a longer, but somewhat flexible, cross-linker is less destabilizing to the folded state than a shorter more rigid cross-linker. The models also suggest how misfolded states may be generated by cross-linking, providing a rationale for altered dynamics seen in nuclear magnetic resonance analyses of these proteins. The theoretical framework is readily portable to any protein of known folded state structure and thus can be used to guide the design of photoswitchable proteins generally.  相似文献   

5.
Mechanisms of protein folding   总被引:1,自引:0,他引:1  
Understanding the mechanism by which a polypeptide chain folds into its native structure is a central problem of modern biophysics. The collaborative efforts of experimental and theoretical studies recently raised the tantalizing possibility to define a unifying mechanism for protein folding. In this review we summarize some of these intriguing advances and analyze them together with a discussion on the new findings concerning the so-called downhill folding.  相似文献   

6.
An accurate characterization of the transition state ensemble (TSE) is central to furthering our understanding of the protein folding reaction. We have extensively tested a recently reported method for studying a protein's TSE, utilizing phi-value data from protein engineering experiments and computational studies as restraints in all-atom Monte Carlo (MC) simulations. The validity of interpreting experimental phi-values as the fraction of native contacts made by a residue in the TSE was explored, revealing that this definition is unable to uniquely specify a TSE. The identification of protein G's second hairpin, in both pre and post-transition conformations demonstrates that high experimental phi-values do not guarantee a residue's importance in the TSE. An analysis of simulations based on structures restrained by experimental phi-values is necessary to yield this result, which is not obvious from a simplistic interpretation of individual phi-values. The TSE that we obtain corresponds to a single, specific nucleation event, characterized by six residues common to all three observed, convergent folding pathways. The same specific nucleus was independently identified from computational and experimental data, and "Conservation of Conservation" analysis in the protein G fold. When associated strictly with complete nucleus formation and concomitant chain collapse, folding is a well-defined two state event. Once the nucleus has formed, the folding reaction enters a slow relaxation process associated with side-chain packing and small, local backbone rearrangements. A detailed analysis of phi-values and their relationship to the transition state ensemble allows us to construct a unified theoretical model of protein G folding.  相似文献   

7.
beta-Sheets and alpha-helices are the two principal secondary structures in proteins. However, our understanding of beta-sheet structure lags behind that of alpha-helices, largely because, until recently, there was no model system to study the beta-sheet secondary structure in isolation. With the development of well-folded beta-hairpins, this is changing rapidly. Recent advances include: increased understanding of the relative contributions of turn, strand and sidechain interactions to beta-hairpin and beta-sheet stability, with the role of aromatic residues as a common subtheme; experimental and theoretical kinetic and thermodynamic studies of beta-hairpin and beta-sheet folding; de novo protein design, including all-beta structures, mixed alpha/beta motifs and switchable systems; and the creation of functional beta-hairpins.  相似文献   

8.
In this work, we have analyzed the relative importance of secondary versus tertiary interactions in stabilizing and guiding protein folding. For this purpose, we have designed four different mutants to replace the alpha-helix of the GB1 domain by a sequence with strong beta-hairpin propensity in isolation. In particular, we have chosen the sequence of the second beta-hairpin of the GB1 domain, which populates the native conformation in aqueous solution to a significant extent. The resulting protein has roughly 30 % of its sequence duplicated and maintains the 3D-structure of the wild-type protein, but with lower stability (up to -5 kcal/mol). The loss of intrinsic helix stability accounts for about 80 % of the decrease in free energy, illustrating the importance of local interactions in protein stability. Interestingly enough, all the mutant proteins, included the one with the duplicated beta-hairpin sequence, fold with similar rates as the GB1 domain. Essentially, it is the nature of the rate-limiting step in the folding reaction that determines whether a particular interaction will speed up, or not, the folding rates. While local contacts are important in determining protein stability, residues involved in tertiary contacts in combination with the topology of the native fold, seem to be responsible for the specificity of protein structures. Proteins with non-native secondary structure tendencies can adopt stable folds and be as efficient in folding as those proteins with native-like propensities.  相似文献   

9.
Protein folding is a topic of fundamental interest since it concerns the mechanisms by which the genetic information is translated into the three-dimensional and functional structure of proteins. In these post-genomic times, the knowledge of the fundamental principles is required in the exploitation of the information contained in the increasing number of sequenced genomes. Protein folding also has a practical application in the understanding of different pathologies associated with protein misfolding and aggregation. Significant advances have been made ranging from the Anfinsen postulate to the "new view" which describes the folding process in terms of an energy landscape. These insights arise from both theoretical and experimental studies. Unravelling the mechanisms of protein folding represents one of the most challenging problems to day. This is an extremely active field of research involving aspects of biology, chemistry, biochemistry, computer science and physics.  相似文献   

10.
Immunoglobulin-binding domain B1 of streptococcal protein G (GB1), a small (56 residues), stable, single-domain protein, is one of the most extensively used model systems in the area of protein folding and design. Recently, NMR and X-ray structures of a quintuple GB1 core mutant (L5V/A26F/F30V/Y33F/A34F) that showed an unexpected, intertwined tetrameric architecture were determined. Here, we report the NMR structure of another mutant, derived from the tetramer by reverting the single amino acid position F26 back to the wild-type sequence A26. The structure reveals a domain-swapped dimer that involves exchange of the second beta-hairpin. The resulting overall structure comprises an eight-stranded beta-sheet whose concave side is covered by two alpha helices. The dimer dissociates into a partially folded, monomeric species with a dissociation constant of 93(+/-10)microM.  相似文献   

11.
Although many naturally occurring proteins consist of multiple domains, most studies on protein folding to date deal with single-domain proteins or isolated domains of multi-domain proteins. Studies of multi-domain protein folding are required for further advancing our understanding of protein folding mechanisms. Borrelia outer surface protein A (OspA) is a β-rich two-domain protein, in which two globular domains are connected by a rigid and stable single-layer β-sheet. Thus, OspA is particularly suited as a model system for studying the interplays of domains in protein folding. Here, we studied the equilibria and kinetics of the urea-induced folding–unfolding reactions of OspA probed with tryptophan fluorescence and ultraviolet circular dichroism. Global analysis of the experimental data revealed compelling lines of evidence for accumulation of an on-pathway intermediate during kinetic refolding and for the identity between the kinetic intermediate and a previously described equilibrium unfolding intermediate. The results suggest that the intermediate has the fully native structure in the N-terminal domain and the single layer β-sheet, with the C-terminal domain still unfolded. The observation of the productive on-pathway folding intermediate clearly indicates substantial interactions between the two domains mediated by the single-layer β-sheet. We propose that a rigid and stable intervening region between two domains creates an overlap between two folding units and can energetically couple their folding reactions.  相似文献   

12.
Understanding protein folding rate is the primary key to unlock the fundamental physics underlying protein structure and its folding mechanism.Especially,the temperature dependence of the folding rate remains unsolved in the literature.Starting from the assumption that protein folding is an event of quantum transition between molecular conformations,we calculated the folding rate for all two-state proteins in a database and studied their temperature dependencies.The non-Arrhenius temperature relation for 16 proteins,whose experimental data had previously been available,was successfully interpreted by comparing the Arrhenius plot with the first-principle calculation.A statistical formula for the prediction of two-state protein folding rate was proposed based on quantum folding theory.The statistical comparisons of the folding rates for 65 two-state proteins were carried out,and the theoretical vs.experimental correlation coefficient was 0.73.Moreover,the maximum and the minimum folding rates given by the theory were consistent with the experimental results.  相似文献   

13.
Although progress has been made in understanding the thermodynamic stability of water-soluble proteins, our understanding of the folding of membrane proteins is at a relatively primitive level. A major obstacle to understanding the folding of membrane proteins is the discovery of systems in which the folding is in thermodynamic equilibrium, and the development of methods to quantitatively assess this equilibrium in micelles and bilayers. Here, we describe the application of disulfide cross-linking to quantitatively measure the thermodynamics of membrane protein association in detergent micelles. The method involves initiating disulfide cross-linking of a protein under reversible redox conditions in a thiol-disulfide buffer and quantitative assessment of the extent of cross-linking at equilibrium. The 19-46 alpha-helical transmembrane segment of the M2 protein from the influenza A virus was used as a model membrane protein system for this study. Previously it has been shown that transmembrane peptides from this protein specifically self-assemble into tetramers that retain the ability to bind to the drug amantadine. We used thiol-disulfide exchange to quantitatively measure the tetramerization equilibrium of this transmembrane protein in dodecylphosphocholine (DPC) detergent micelles. The association constants obtained agree remarkably well with those derived from analytical ultracentrifugation studies. The experimental method established herein should provide a broadly applicable tool for thermodynamic studies of folding, oligomerization and protein-protein interactions of membrane proteins.  相似文献   

14.
15.
In this paper, we propose an analytically tractable model of protein folding based on one-dimensional general random walk. A second-order differential equation for the mean folding time of a single protein is constructed which can be used to derive the observed relationship between the folding rate constant and the number of native contacts. The parameters appearing in the model can be determined by fitting the theoretical prediction to the experimental result. In addition, taking into account the fact that the number of native contacts is almost proportional to the relative contact order, we can also explain the observed relationship between the folding rate constant and the relative contact order.  相似文献   

16.
We study the differences in folding stability of β‐hairpin peptides, including GB1 hairpin and a point mutant GB1 K10G, as well as tryptophan zippers (TrpZips): TrpZip1, TrpZip2, TrpZip3‐1, and TrpZip4. By performing replica‐exchange molecular dynamics simulations with Amber03* force field (a modified version of Amber ff03) in explicit solvent, we observe ab initio folding of all the peptides except TrpZip3‐1, which is experimentally known to be the least stable among the peptides studied here. By calculating the free energies of unfolding of the peptides at room temperature and folding midpoint temperatures for thermal unfolding of peptides, we find that TrpZip4 and GB1 K10G peptides are the most stable β‐hairpins followed by TrpZip1, GB1, and TrpZip2 in the given order. Hence, the proposed K10G mutation of GB1 peptide results in enhanced stability compared to wild‐type GB1. An important goal of our study is to test whether simulations with Amber 03* model can reproduce experimentally predicted folding stability differences between these peptides. While the stabilities of GB1 and TrpZip1 yield close agreement with experiment, TrpZip2 is found to be less stable than predicted by experiment. However, as heterogenous folding of TrpZip2 may yield divergent thermodynamic parameters by different spectroscopic methods, mismatching of results with previous experimental values are not conclusive of model shortcomings. For most of the cases, molecular simulations with Amber03* can successfully reproduce experimentally known differences between the mutated peptides, further highlighting the predictive capabilities of current state‐of‐the‐art all‐atom protein force fields. Proteins 2015; 83:1307–1315. © 2015 Wiley Periodicals, Inc.  相似文献   

17.
Zhou R 《Proteins》2003,53(2):148-161
The Generalized Born (GB) continuum solvent model is arguably the most widely used implicit solvent model in protein folding and protein structure prediction simulations; however, it still remains an open question on how well the model behaves in these large-scale simulations. The current study uses the beta-hairpin from C-terminus of protein G as an example to explore the folding free energy landscape with various GB models, and the results are compared to the explicit solvent simulations and experiments. All free energy landscapes are obtained from extensive conformation space sampling with a highly parallel replica exchange method. Because solvation model parameters are strongly coupled with force fields, five different force field/solvation model combinations are examined and compared in this study, namely the explicit solvent model: OPLSAA/SPC model, and the implicit solvent models: OPLSAA/SGB (Surface GB), AMBER94/GBSA (GB with Solvent Accessible Surface Area), AMBER96/GBSA, and AMBER99/GBSA. Surprisingly, we find that the free energy landscapes from implicit solvent models are quite different from that of the explicit solvent model. Except for AMBER96/GBSA, all other implicit solvent models find the lowest free energy state not the native state. All implicit solvent models show erroneous salt-bridge effects between charged residues, particularly in OPLSAA/SGB model, where the overly strong salt-bridge effect results in an overweighting of a non-native structure with one hydrophobic residue F52 expelled from the hydrophobic core in order to make better salt bridges. On the other hand, both AMBER94/GBSA and AMBER99/GBSA models turn the beta-hairpin in to an alpha-helix, and the alpha-helical content is much higher than the previously reported alpha-helices in an explicit solvent simulation with AMBER94 (AMBER94/TIP3P). Only AMBER96/GBSA shows a reasonable free energy landscape with the lowest free energy structure the native one despite an erroneous salt-bridge between D47 and K50. Detailed results on free energy contour maps, lowest free energy structures, distribution of native contacts, alpha-helical content during the folding process, NOE comparison with NMR, and temperature dependences are reported and discussed for all five models.  相似文献   

18.
The most complex problem in studying multi-state protein folding is the determination of the sequence of formation of protein intermediate states. A far more complex issue is to determine at what stages of protein folding its various parts (secondary structure elements) develop. The structure and properties of different intermediate states depend in particular on these parts. An experimental approach, named μ-analysis, which allows understanding the order of formation of structural elements upon folding of a multi-state protein was used in this study. In this approach the same elements of the protein secondary structure are “tested” by substitutions of single hydrophobic amino acids and by incorporation of cysteine bridges. Single substitutions of hydrophobic amino acids contribute to yielding information on the late stages of protein folding while incorporation of ss-bridges allows obtaining data on the initial stages of folding. As a result of such an μ-analysis, we have determined the order of formation of beta-hairpins upon folding of the green fluorescent protein.  相似文献   

19.
Protein folding is a topic of fundamental interest since it concerns the mechanisms by which the genetic message is translated into the three-dimensional and functional structure of proteins. In these post-genomic times, the knowledge of the fundamental principles are required in the exploitation of the information contained in the increasing number of sequenced genomes. Protein folding also has practical applications in the understanding of different pathologies and the development of novel therapeutics to prevent diseases associated with protein misfolding and aggregation. Significant advances have been made ranging from the Anfinsen postulate to the "new view" which describes the folding process in terms of an energy landscape. These new insights arise from both theoretical and experimental studies. The problem of folding in the cellular environment is briefly discussed. The modern view of misfolding and aggregation processes that are involved in several pathologies such as prion and Alzheimer diseases. Several approaches of structure prediction, which is a very active field of research, are described.  相似文献   

20.
蛋白质折叠速率的正确预测对理解蛋白质的折叠机理非常重要。本文从伪氨基酸组成的方法出发,提出利用序列疏水值震荡的方法来提取蛋白质氨基酸的序列顺序信息,建立线性回归模型进行折叠速率预测。该方法不需要蛋白质的任何二级结构、三级结构信息或结构类信息,可直接从序列对蛋白质折叠速率进行预测。对含有62个蛋白质的数据集,经过Jack.knife交互检验验证,相关系数达到0.804,表示折叠速率预测值与实验值有很好的相关性,说明了氨基酸序列信息对蛋白质折叠速率影响重要。同其他方法相比,本文的方法具有计算简单,输入参数少等特点。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号