首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Variation is the raw material for evolution. Evolutionary potential is determined by the amount of genetic variation, but evolution can also alter the visibility of genetic variation to natural selection. Fluctuating environments are suggested to maintain genetic variation but they can also affect environmental variance, and thus, the visibility of genetic variation to natural selection. However, experimental studies testing these ideas are relatively scarce. In order to determine differences in evolutionary potential we quantified variance attributable to population, genotype and environment for populations of the bacterium Serratia marcescens. These populations had been experimentally evolved in constant and two fluctuating environments. We found that strains that evolved in fluctuating environments exhibited larger environmental variation suggesting that adaptation to fluctuations has decreased the visibility of genetic variation to selection.  相似文献   

2.
Environmentally cued polymorphisms are hypothesized to evolve when the environment is coarsegrained and different genotypes are unable to choose the habitats in which they are most fit. In Papilio polyxenes , which has an environmentally cued pupal colour dimorphism, there is genetic variation in both tendency to produce brown or green pupae and preference for green- or brown-inducing pupation sites, but the two traits are not correlated.  相似文献   

3.
Discrete variation in wing morphology is a very common phenomenon in insects and has been used extensively in the past 50 years as a model to study the ecology and evolution of dispersal. Wing morph determination can be purely genetic, purely environmental, or some combination of the two. The precise genetic determinants of genetically based wing morph variation are unknown. Here we explore the genetic basis of wing polymorphism in the pea aphid, which can produce either winged or wingless males. We confirm that three types of pea aphid clones coexist in natural populations, those producing winged males only, those producing wingless males only, and those producing a mixture of both. A Mendelian genetic analysis reveals that male wing polymorphism in pea aphids is determined by a single locus, two alleles system. Using microsatellite loci of known location, we show that this locus is on the X chromosome. The existence of a simple genetic determinism for wing polymorphism in a system in which genetic investigation is possible may help investigations on the physiological and molecular mechanisms of genetically-based wing morph variation. This locus could also be used in the search for genes involved in the wing polyphenism described in parthenogenetic females and to investigate the interplay between polymorphisms and polyphenisms.  相似文献   

4.
Studies of heritable colour polymorphisms allow investigators to track the genetic dynamics of natural populations. By comparing polymorphic populations over large geographic areas and across generations, issues about both morph stability and evolutionary dynamics can be addressed, increasing our understanding of the potential mechanisms maintaining genetic polymorphisms. In the present study, we investigated population morph frequencies in a sex‐limited heritable colour polymorphic damselfly (Ischnura elegans, Vander Linden), with three discrete female morphs. We compared the frequencies of these three female morphs in 120 different populations from ten European countries at differing latitudes and longitudes. There were pronounced differences in morph frequencies both across the entire European biogeographic range, as well as at a smaller scale within regions. We also found considerable between‐population variation at the local scale within regions, particularly at the edges of the range of this species. We discuss these findings in the context of recent models of adaptive population divergence along the range of a species. This polymorphism is thus highly dynamic, with stable morph frequencies at the core of the species range but fluctuating morph dynamics at the range limits. We finish with a discussion of how local interactions and climatic factors can be expected to have a strong influence on the biogeographic patterns in this species and other sexually selected polymorphisms. © 2011 The Linnean Society of London, Biological Journal of the Linnean Society, 2011, 102 , 775–785.  相似文献   

5.
Theory on indirect genetic effects (IGEs) indicates that variation in the genetic composition of social groups can generate GxG epistasis that may promote the evolution of stable polymorphisms. Using a livebearing fish with a genetic polymorphism in coloration and associated behavioral differences, we tested whether genotypes of social partners interacted with focal individual genotypes to influence growth and condition over 16 weeks of development. We found that IGEs had a significant influence on patterns of feeding, regardless of focal fish genotype. There was no influence of social environment on juvenile length, but there was significant GxG epistasis for body condition. Each focal juvenile was in better condition when its own genotype was not present in adult social partners. These data are consistent with negative frequency‐dependent selection in which each morph performs better when it is rare. Neither variation in feeding nor activity‐related behaviors explained variation in body condition, suggesting that GxG epistasis for condition was caused by physiological differences between the two genotypes. These findings indicate that GxG epistasis in a given polymorphism can generate fitness landscapes that contribute to the maintenance of that polymorphism and to maintenance of genetic variation for additional fitness‐related traits.  相似文献   

6.
This paper reports a series of experiments over many years on hypopus duration and extends the preceding investigation (1987) on hypopus formation inLepidoglyphus destructor (Schrank, 1781). The length of time required for hypopus physiogenesis (diapause development) is genetically programmed but influenced by environmental factors. This span of time is highly variable, and may extend from one week to more than a year. Spreading out the potential for hypopus completion over time is adaptive, since a pool of hypopodes with prolonged and staggered dormancies serves to spread the risk of emergence of tritonymphs over extended periods of time; it buffers the population against sudden drought to which all other stages of the life-cycle succumb.The additive structure and large variance of the genetic system underlying the length of time required for hypopus physiogenesis allows for the reconstitution of a broad spectrum of genotypes in every generation through the process of meiotic segregation and recombination during sexual reproduction. It favours stored variability, provides a fail-safe device both for survival as well as development in irregularly fluctuating environments, and facilitates the adaptation of populations to local conditions. The trait for hypopus physiogenesis varies independently from that of hypopus formation, and is apparently free to adjust, without genetic constraints, towards an adaptive optimum. The response to selection is fast.Low environmental humidities and high temperatures accelerate physiogenesis of the hypopus. Completion of the hypopus stage and moulting to the tritonymph is triggered by high humidities at moderate temperatures. If environmental conditions preclude moulting, the hypopus following ending of physiogenesis enters a state of quiescence.In contrast the seasonal and largely predictably varying environments, in which essentially anticipatory and season-related token cues like photoperiod regulate the timing of so many arthropod lifecycles,L. destructor copes with sudden and fatal drought, as well as with unheralded and favourable humidities in its ephemeral habitats, mainly by excessive genetic polymorphism in hypopus duration and formation; some genotypes are always instantaneously fit to meet the respective environmental situation.The mite faces gradual food deterioration of its patchily distributed microhabitats by a short-term anticipatory and environmentally cued developmental switch mechanism, which lowers the threshold for hypopus induction.On top of genetic variability and phenotypic plastivity, any genotype×environment interaction provides for increasing flexibility above that from genetic polymorphism and environmental polyphenism alone. This extraordinary measure of adaptedness fitsL. destructor for life in irregularly fluctuating environments.  相似文献   

7.
Polymorphism describes two or more distinct, genetically determined, phenotypes that co‐occur in the same population, where the rarest morph is maintained at a frequency above the mutation rate (Ford 1945; Huxley 1955). In a recent opinion piece, we explored a new idea regarding the role of genetic architectures and morph interactions in colour polymorphisms and how this can negatively affect population performance (Bolton et al. 2015). In this issue of Molecular Ecology, Forsman (2016) thoroughly discusses the current evidence for polymorphisms enhancing population performance and critiques the validity of the definitions of polymorphism we use in our original paper. We respond by clarifying that the negative consequences of polymorphisms that we discussed are likely to be most pertinent in species that have a particular set of characteristics, such as strong sexual or social interactions between morphs and discrete genetic architectures. Although it was not our intention to redefine polymorphism, we do believe that there should be further discussion about refining or characterizing balanced polymorphisms with respect to the degree of morph sympatry, discreteness of traits and their underlying genetic architecture, and the types of selection that drive and maintain the variation. The latter describes whether polymorphism is primarily maintained by external factors such as predation pressure or internal factors such as interactions with members of the same species. The contribution of Forsman (2016) is useful to this discussion, and we hope that our exchange of opinions will inspire new empirical and theoretical ideas on the origin and maintenance of colour polymorphisms.  相似文献   

8.
Genetic Variation in Heterogeneous Environments   总被引:3,自引:0,他引:3       下载免费PDF全文
Charles E. Taylor 《Genetics》1976,83(4):887-894
A model of population structure in heterogeneous environments is described and conditions sufficient for maintaining a polymorphism are derived.

The absolute fitness of any genotype is regarded as a function of location in the niche space and the population density at that location. Two modes of habitat selection are examined: (1) organisms are distributed uniformly over the environment; and (2) each organism selects to occupy that habitat in which it is most fit ("optimal habitant selection").—Sufficient conditions for maintenance of genetic polymorphisms are derived for both models. In populations which do not practice habitat selection heterozygote superiority averaged over the environment is sufficient to guarantee the existence of polymorphisms. Comparable conditions for populations which practice optimal habitat selection are much less restrictive. If the heterozygotes are superior to one homozygote in any one part of the niche and to the other homozygote in any other part of the niche then a polymorphism will be defined.—A positive correlation between genetic and environmental variation follows from the model with habitat selection, but not from the other. The adaptive significance of polymorphisms thus depends on how animals behave.

  相似文献   

9.
Alternative genetically determined color morphs within a population or species are believed to successfully interbreed within a population. However, the occurrence of prezygotic or ecological selection in a number of polymorphic systems may lead to nonrandom mating and prevent genetic morphs from fully interbreeding. Here we show that postzygotic incompatibility significantly limits gene flow between the sympatric red and black color morphs of the Gouldian finch ( Erythrura gouldiae ). Using a balanced within-female experimental design, in which individuals were forced to breed in pure and mixed morph crosses, we found large inviability effects (>30%) in offspring resulting from genetically mixed genotypes. The consistent mortality effects across different stages of development (e.g., prehatching, juvenile, adulthood), unconfounded by environmentally derived parental effects or social environments, reveal an underlying genetic incompatibility between different genotypes. Furthermore, mortality in mixed morph genotypes was particularly severe (43.6%) for the heterogametic sex (daughters), which is consistent with Haldane's rule predicted for postzygotic incompatibilities between hybridizing species. This significant, but incomplete, postzygotic isolation suggests that the sympatric morphs may represent transient stages in the speciation–hybridization process.  相似文献   

10.
Many polyphenisms are examples of adaptive phenotypic plasticity where a single genotype produces distinct phenotypes in response to environmental cues. Such alternative phenotypes occur as winged and wingless parthenogenetic females in the pea aphid (Acyrthosiphon pisum). However, the proportion of winged females produced in response to a given environmental cue varies between clonal genotypes. Winged and wingless phenotypes also occur in males of the sexual generation. In contrast to parthenogenetic females, wing production in males is environmentally insensitive and controlled by the sex-linked, biallelic locus, aphicarus (api). Hence, environmental or genetic cues induce development of winged and wingless phenotypes at different stages of the pea aphid life cycle. We have tested whether allelic variation at the api locus explains genetic variation in the propensity to produce winged females. We assayed clones from an F2 cross that were heterozygous or homozygous for alternative api alleles for their propensity to produce winged offspring. We found that clones with different api genotypes differed in their propensity to produce winged offspring. The results indicate genetic linkage of factors controlling the female wing polyphenism and male wing polymorphism. This finding is consistent with the hypothesis that genotype by environment interaction at the api locus explains genetic variation in the environmentally cued wing polyphenism.  相似文献   

11.
Alternative male mate-securing strategies are widespread among animal taxa, but there are few well-documented examples of genetic polymorphisms for them. In the Japanese calopterygid damselfly Mnais costalis, males occur as either orange-winged territorial fighter males, or clear-winged non-territorial sneaker males. It has previously been suggested that this behavioral polymorphism is genetically controlled. However, there was no direct evidence for this. By rearing two groups of larvae from the same female but sired by different male morphs, I show that differential morph development is genetically controlled and consistent with a single-locus two-allele autosomal genetic polymorphism.  相似文献   

12.
Motivated by data demonstrating fluctuating relative and absolute fitnesses for white- versus blue-flowered morphs of the desert annual Linanthus parryae, we present conditions under which temporally fluctuating selection and fluctuating contributions to a persistent seed bank will maintain a stable single-locus polymorphism. In L. parryae, blue flower color is determined by a single dominant allele. To disentangle the underlying diversity-maintaining mechanism from the mathematical complications associated with departures from Hardy-Weinberg genotype frequencies and dominance, we successively analyze a haploid model, a diploid model with three distinguishable genotypes, and a diploid model with complete dominance. For each model, we present conditions for the maintenance of a stable polymorphism, then use a diffusion approximation to describe the long-term fluctuations associated with these polymorphisms. Our protected polymorphism analyses show that a genotype whose arithmetic and geometric mean relative fitnesses are both less than one can persist if its relative fitness exceeds one in years that produce the most offspring. This condition is met by data from a population of L. parryae whose white morph has higher fitness (seed set) only in years of relatively heavy rain fall. The data suggest that the observed polymorphism may be explained by fluctuating selection. However, the yearly variation in flower color frequencies cannot be fully explained by our simple models, which ignore age structure and possible selection in the seed bank. We address two additional questions--one mathematical, the other biological--concerning the applicability of diffusion approximations to intense selection and the applicability of long-term predictions to datasets spanning decades for populations with long-lived seed banks.  相似文献   

13.
14.
Recent models suggest that the existence of environmentally induced polymorphisms within a single population (especially those related to foraging) facilitates the process of evolutionary divergence within a single gene pool by generating distinct phenotypic modes that are exposed to differential selection. In order to test a prediction of the phenotypic plasticity model of divergence, we used a well-documented polymorphism to disentangle the relative effects of morph and rearing environment in generating phenotypic variance. We reared first-generation offspring of two sympatric morphs of Arctic charr Salvelinus alpinus in the laboratory and compared their head morphology with that of their wild parents. Morphological characters with a known functional role in foraging were highly plastic. Rearing environment accounted for the largest component of the variation in expressed phenotype, but this environmental effect overlaid a clear (but small) genetic effect. We conclude that phenotypic plasticity has played a significant role in the evolution of this trophic polymorphism, but that the evolutionary process has progressed to the point that the gene pool is now segregated.  © 2004 The Linnean Society of London, Biological Journal of the Linnean Society , 2004, 81 , 611–618.  相似文献   

15.
Discerning the adaptive significance of migratory strategies poses significant challenges, not the least of which is measuring migratory capability in natural populations. We take advantage of a visible migratory dimorphism to study variation in migratory capability in the stream-dwelling water strider, Aquarius remigis. Theory predicts loss of migratory capability in this species because streams have been viewed as stable and persistent habitats. As expected, A. remigis lack wings throughout most of North America. However, Californian populations are noted for unexpectedly high frequencies of winged, migratory morphs. To deduce the adaptive significance of this anomalous regional variation, we compare proportion winged among 37 Californian populations. We discover a strong, positive correlation with altitude, but no correlations with latitude, rainfall or stream size. A common garden experiment reveals that both proportion winged and its reaction norm to temperature differ genetically among populations, and a half-sibling experiment demonstrates that wing morph has high heritability, moderate genetic correlations across environments and a significant genotype by environment interaction. These results support the hypothesis that proportion winged and its reaction norm to temperature have diverged genetically in California. We conclude that high migratory capability is an evolutionary adaptation to the unusual harshness and instability of Californian stream habitats, and particularly to the high elevational gradients and extreme seasonal variation characteristic of montane streams.  相似文献   

16.
Here, I suggest that colour polymorphic study systems have been underutilized to answer general questions about evolutionary processes, such as morph frequency dynamics between generations and population divergence in morph frequencies. Colour polymorphisms can be used to study fundamental evolutionary processes like frequency‐dependent selection, gene flow, recombination and correlational selection for adaptive character combinations. However, many previous studies of colour polymorphism often suffer from weak connections to population genetic theory. I argue that too much focus has been directed towards noticeable visual traits (colour) at the expense of understanding the evolutionary processes shaping genetic variation and covariation associated with polymorphisms in general. There is thus no need for a specific evolutionary theory for colour polymorphisms beyond the general theory of the maintenance of polymorphisms in spatially or temporally variable environments or through positive or negative frequency‐dependent selection. I outline an integrative research programme incorporating these processes and suggest some fruitful avenues in future investigations of colour polymorphisms.  相似文献   

17.
Both genetic and environmental factors underlie phenotypic variation. While research at the interface of evolutionary and developmental biology has made excellent advances in understanding the contribution of genes to morphology, less well understood is the manner in which environmental cues are incorporated during development to influence the phenotype. Also virtually unexplored is how evolutionary transitions between environmental and genetic control of trait variation are achieved. Here, I review investigations into molecular mechanisms underlying phenotypic plasticity in the aphid wing dimorphism system. Among aphids, some species alternate between environmentally sensitive (polyphenic) and genetic (polymorphic) control of wing morph determination in their life cycle. Therefore, a traditional molecular genetic approach into understanding the genetically controlled polymorphism may provide a unique avenue into not only understanding the molecular basis of polyphenic variation in this group, but also the opportunity to compare and contrast the mechanistic basis of environmental and genetic control of similar dimorphisms.  相似文献   

18.

Background and Aims

It has been proposed that variation in pollinator preferences or a fluctuating environment can act to maintain flower colour polymorphism. These two hypotheses were tested in an aquatic monocot Butomus umbellatus (Butomaceae) with a pink or white gynoecium in the field population.

Methods

Pollinator visitation was compared in experimental arrays of equivalent flowering cymes from both colour morphs. Seed set was compared between inter- and intramorph pollination under different water levels to test the effect of fluctuating environment on seed fertility.

Key Results

Overall, the major pollinator groups did not discriminate between colour morphs. Compared with the white morph, seed production in the pink morph under intermorph, intramorph and open pollination treatments was significantly higher when the water level was low but not when it was high. Precipitation in July was correlated with yearly seed production in the pink morph but not in the white morph.

Conclusions

The results indicated that the two colour morphs differed in their tolerance to water level. Our study on this aquatic plant provides additional evidence to support the hypothesis that flower colour polymorphism can be preserved by environmental heterogeneity.  相似文献   

19.
Polyphenic traits are widespread and represent a conditional strategy sensitive to environmental cues. The environmentally cued threshold (ET) model considers the switchpoint between alternative phenotypes as a polygenic quantitative trait with normally distributed variation. However, the genetic variation for switchpoints has rarely been explored empirically. Here, we used inbred lines to investigate the genetic variation for the switchpoint in the mite Rhizoglyphus echinopus, in which males are either fighters or scramblers. The conditionality of male dimorphism varied among inbred lines, indicating that there was genetic variation for switchpoints in the base population, as predicted by the ET model. Our results also suggest a mixture between canalized and conditional strategists in R. echinopus. We propose that major genes that canalize morph expression and affect the extent to which a trait can be conditionally expressed could be a feature of the genetic architecture of threshold traits in other taxa.  相似文献   

20.
Vibrio vulnificus causes rare but frequently fatal septicemia associated with raw oyster consumption by persons with underlying hepatic or immune system dysfunction. The virulence potential of environmental reservoirs appears widely distributed, because most strains are virulent in animal models; however, several investigations recently demonstrated genetic divergence among strains from clinical versus environmental origin at independent genetic loci. The present study used PCR to screen DNA polymorphisms in strains from environmental (n = 35) or clinical (n = 33) sources, and genomic relationships were determined by repetitive extragenic palindromic DNA PCR (rep-PCR) typing. Significant (P < 0.01) association was observed for typical "clinical" or "environmental" polymorphism profiles based on strain origin. Most oyster isolates (88%), including all of those with the "environmental" profile, also formed a single rep-PCR genogroup. Clinical isolates within this group did not have the typical "clinical" profile. On the other hand, clinical isolates with the typical polymorphism profile were distributed among multiple rep-PCR genogroups, demonstrating greater genetic diversity than was evident by profiling genetic polymorphisms. Wound isolates were genetically distinct from typical blood isolates by all assays. Strains from an outbreak of wound infections in Israel (biotype 3) were closely related to several U.S. strains by rep-PCR, indicating potential reservoirs of emerging disease. Strains genetically related to blood isolates appeared to be relatively rare in oysters, as only one had the "clinical" polymorphism profile or clustered by rep-PCR. However, this study was not an extensive survey, and more sampling using rep-PCR for sensitive genetic discrimination is needed to determine the virulence potential of environmental reservoirs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号