首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
 The effect of arbuscular mycorrhiza (AM) on white clover and ryegrass grown together in a soil spiked with polycyclic aromatic hydrocarbons (PAH) was assessed in a pot experiment. The soil was spiked with 500 mg kg–1 anthracene, 500 mg kg–1 chrysene and 50 mg kg–1 dibenz(a,h)anthracene, representing common PAH compounds with three, four and five aromatic rings, respectively. Three treatments and two harvest times (8 and 16 weeks) were imposed on plants grown in spiked soil: no mycorrhizal inoculation, mycorrhizal inoculation (Glomus mosseae P2, BEG 69) and mycorrhizal inoculation and surfactant addition (Triton X-100). Pots without PAH were also included as a control of plant growth and mycorrhizal colonization as affected by PAH additions. The competitive ability of clover vis-à-vis ryegrass regarding shoot and root growth was enhanced by AM, but reduced by PAH and the added surfactant. This was reflected by mycorrhizal root colonization which was moderate for clover (20–40% of total root length) and very low for ryegrass (0.5–5% of total root length). Colonization of either plant was similar in spiked soil with and without the added surfactant, but the PAH reduced colonization of clover to half that in non-spiked soil. P uptake was maintained in mycorrhizal clover when PAH were added, but was reduced in non-mycorrhizal clover and in mycorrhizal clover that received surfactant. Similar effects were not observed on ryegrass. These results are discussed in the context of the natural attenuation of organic pollutants in soils. Accepted: 12 June 2000  相似文献   

2.
To examine the influence of vesicular-arbuscular (VA) mycorrhizal fungi on phosphorus (P) depletion in the rhizosphere, mycorrhizal and non-mycorrhizal white clover (Trifolium repens L.) were grown for seven weeks in a sterilized calcareous soil in pots with three compartments, a central one for root growth and two outer ones for hyphae growth. Compartmentation was accomplished by a 30-μm nylon net. The root compartment received a uniform level of P (50 mg kg−1 soil) in combination with low or high levels of P (50 or 150 mg kg−1 soil) in the hyphal compartments. Plants were inoculated withGlomus mosseae (Nicol. & Gerd.) Gerd. & Trappe or remained uninfected. Mycorrhizal inoculation doubled P concentration in shoot and root, and increased dry weight, especially of the shoot, irrespective of P levels. Mycorrhizal contribution accounted for 76% of total P uptake at the low P level and 79% at the high P level, and almost all of this P was delivered by the hyphae from the outer compartment. In the non-mycorrhizal plants, the depletion of NaHCO3-extractable P (Olsen-P) extended about 1 cm into the outer compartment, but in the mycorrhizal plants a uniform P depletion zone extended up to 11.7 cm (the length of the hyphal compartment) from the root surface. In the outer compartment, the mycorrhizal hyphae length density was high (2.5–7 m cm−3 soil) at the various distances (0–11.7 cm) from the root surface. Uptake rate of P by mycorrhizal hyphae was in the range of 3.3–4.3×10−15 mol s−1 cm−1.  相似文献   

3.
Bioremediation technologies of Polycyclic Aromatic Hydrocarbons (PAH) are often limited by the recalcitrance to biodegradation of high molecular weight (HMW) PAH. Rhizosphere is known to increase the biodegradation of PAH but little is known about the biodegradability of these HMW compounds by␣rhizosphere bacteria. This study compared the effects of a 3 and a 5-ring PAH, phenanthrene (PHE) and␣dibenzo[a,h]anthracene (dBA) respectively, on the composition of bacterial community, the bacterial density and the biodegradation activity. Compartmentalized devices were designed to harvest three consecutive sections of the rhizosphere. Rhizosphere and non-rhizosphere compartments were filled with PHE or dBA spiked or unspiked sand and inoculated with a soil bacterial inoculum. Different bacterial communities and degradation values were found 5 weeks after spiking with PHE (41–76% biodegradation) and dBA (12–51% biodegradation). In sections closer to the root surface, bacterial populations differed as a function of the distance to roots and the PAH added, whereas in further rhizosphere sections, communities were closer to those of the non-planted treatments. Biodegradation of PHE was also a function of the distance to roots, and decreased from 76 to 42% within 9 mm from the roots. However, biodegradation of dBA was significantly higher in the middle section (3–6 mm from roots) than the others. Rhizosphere degradation of PAH varies with the nature of the PAH, and C fluxes from roots could limit the degradation of dBA.  相似文献   

4.
 The effects of an arbuscular mycorrhizal (AM) fungus and drought stress on the growth, phosphorus, and micronutrient uptake of two wheat genotypes exhibiting differences in drought resistance were investigated. Plants were grown on a low P (4 mg kg–1 soil) silty clay (Typic Xerochrept) soil-sand mix. Mycorrhizal infection was higher under well-watered than under dry soil conditions and the drought-resistant genotype CR057 had a higher mycorrhizal colonization than the drought-sensitive genotype CR006. Total and root dry matter yields and total root length were higher in mycorrhizal than in nonmycorrhizal plants of both genotypes. CR057 had higher total dry matter but not root dry matter than CR006 plants. The enhancement in total dry matter due to AM inoculation was 42 and 39% under well-watered and 35 and 45% under water-stressed for CR057 and and CR006, respectively. For both genotypes, the contents of P, Zn, Cu, Mn, and Fe were higher in mycorrhizal than in nonmycorrhizal plants and higher under well-watered than under dry soil conditions. The enhancement of P, Zn, Cu, Mn, and Fe uptake due to AM inoculation was more pronounced in CR006 than in CR057, particularly under water-stressed conditions. Thus CR006 benefitted from AM infection more than the CR057 under dry soil conditions, despite the fact that CR057 roots were highly infected. It appears that CR006 is more dependent on AM symbiosis than CR057. Accepted: 12 February 1997  相似文献   

5.
Chen BD  Liu Y  Shen H  Li XL  Christie P 《Mycorrhiza》2004,14(6):347-354
We investigated uptake of Cd by arbuscular mycorrhizal (AM) maize inoculated with Glomus mosseae from a low-P sandy calcareous soil in two glasshouse experiments. Plants grew in pots containing two compartments, one for root and hyphal growth and one for hyphal development only. Three levels of Cd (0, 25 and 100 mg kg–1) and two of P (20 and 60 mg kg–1) were applied separately to the two compartments to assess hyphal uptake of Cd. Neither Cd nor P addition inhibited root colonization by the AM fungus, but Cd depressed plant biomass. Mycorrhizal colonization, P addition and increasing added Cd level led to lower Cd partitioning to the shoots. Plant P uptake was enhanced by mycorrhizal colonization at all Cd levels studied. When Cd was added to the plant compartment and P to the hyphal compartment, plant biomass increased with AM colonization and the mycorrhizal effect was more pronounced with increasing Cd addition. When P was added to the plant compartment and Cd to the hyphal compartment, plant biomass was little affected by AM colonization, but shoot Cd uptake was increased by colonization at the low Cd addition rate (25 mg kg–1) and lowered at the higher Cd rate (100 mg kg–1) but with no difference in root Cd uptake. These effects may have been due to immobilization of Cd by the fungal mycelium or effects of the AM fungus on rhizosphere physicochemical conditions and are discussed in relation to possible phytostabilization of contaminated sites by AM plants.  相似文献   

6.
Johansen  Anders 《Plant and Soil》1999,209(1):119-127
Two experiments were conducted where Cucumis sativus were grown in uncompartmented pots either alone or in symbiosis with Glomus intraradices Schenck and Smith (Experiment 1) or Glomus sp. (Experiment 2) in order to investigate if root colonization by arbuscular mycorrhizal (AM) fungi has an effect on depletion of the soil mineral N pool. All pots were gradually supplied with 31 mg NH4NO3-N kg-1 dry soil from 12–19 days after planting and an additional 50 mg (NH4)2SO4-N kg-1 dry soil (15N-labelled in Experiment 1) was supplied at 21 or 22 days after planting in Experiments 1 and 2, respectively. Dry weight of plant parts, total root length, mycorrhizal colonization rate and soil concentration of NH 4 + and NO 3 - were recorded at five sequential harvest events: 21, 24, 30, 35 and 42 days (Experiment 1) and 22, 25, 28, 31 and 35 days (Experiment 2) after planting. In Experiment 1, plants were also analysed for total content of N and 15N. The mycorrhizal colonization rate increased during time: from 25 to 40% in Experiment 1 and from 50 to 60% in Experiment 2. Plant dry matter accumulation was unaffected by mycorrhizal colonization, except in Experiment 1 where shoot dry weights were slightly increased and in Experiment 2 where root dry weights were slightly decreased compared to non-mycorrhizal control plants. The total root length was similar in the control and mycorrhizal treatments in Experiment 1, while it was decreased (20–30%) by mycorrhizal colonization in the last two harvest in Experiment 2. Mycorrhizal colonization affected the rate of depletion of soil mineral N in Experiment 1, where both NH 4 + and NO 3 - concentrations were markedly lower in the first two harvests, when plants were mycorrhizal. As the root length was similar in mycorrhizal and control treatments, this may indicate that the external AM hyphae contributed to the depletion of the soil mineral N pool. A similar pattern was observed in Experiment 2, although the effect was less pronounced. The 15N enrichment in mycorrhizal plants (Experiment 1) also indicated a faster NH 4 + uptake than in the non-mycorrhizal controls in the first two harvests after application of the 15N-labelled N source. However, the external hyphae and roots seemed to have access to the same N sources as the 15N enrichment and total N content were similar in mycorrhizal and control plants at the end of the experiment. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

7.
Audet P  Charest C 《Mycorrhiza》2006,16(4):277-283
This greenhouse study aimed to determine the effect of colonization by the arbuscular mycorrhizal (AM) fungus (Glomus intraradices Schenck & Smith) on the “wild” tobacco (Nicotiana rustica L. var. Azteca), under soil–zinc (Zn) conditions. Plants of N. rustica were grown in AM or non-AM inoculated substrate and subjected to four soil–[Zn] concentrations (0, 50, 100, and 250 mg Zn kg−1 dry soil). The AM root colonization increased markedly from 14 to 81% with the increasing soil–[Zn] and the mycorrhizal structures were significantly more abundant at the highest soil–[Zn], suggesting that Zn may be involved directly or indirectly in AM root colonization. In addition, total Zn content or Zn concentrations in shoots and roots were shown to increase as soil–[Zn] increased in both AM and non-AM plants. As for the growth parameters studied, there were no significant differences between treatments despite the increase in Zn content or concentration. The AM roots subjected to the highest soil–[Zn] had a significant reduction by about 50% of total Zn content and Zn concentration compared to non-AM roots. Still, the relative extracted Zn percentage decreased dramatically as soil–[Zn] increased. Soil pH was significantly lower in non-AM than AM treatments at the highest soil–[Zn]. In summary, AM plants (particularly roots) showed lower Zn content and concentration than non-AM plants. In this regard, the AM fungi have a protective role for the host plant, thus playing an important role in soil-contaminant immobilization processes; and, therefore, are of value in phytoremediation, especially when heavy metals approach toxic levels in the soil.  相似文献   

8.
 The growth responses of lentil (Lens esculenta L. cv. Laird) and two wheat cultivars (Triticum aestivum L. cv. Laura and Neepawa) to Glomus clarum NT4 in soil containing indigenous arbuscular mycorrhizal fungi (AMF) and fertilized with phosphorus at different (0, 5, 10, 20 ppm) levels was studied in a growth chamber. Soil was inoculated with a monospecific culture of G. clarum NT4 to provide an inoculant:indigenous AMF ratio of ca. 1 : 100. The shoot and root growth, and AMF colonization levels of NT4-inoculated lentil were significantly (P≤0.05) greater than the appropriate control plants in the unfertilized soil at 48 days after planting (DAP). At 95 DAP, NT4 inoculation had significantly increased the shoot dry weight (P≤0.08) and AMF colonization (P≤0.05) of lentil plants receiving 5 mg P kg–1 soil, whereas 20 mg P kg–1 soil reduced the shoot growth of NT4-inoculated plants. The NT4 inoculant had no effect (P≤0.05) on shoot P content, but increased (P≤0.08) the P-use efficiency of lentil plants receiving 5 mg P kg–1 soil. In contrast to the inoculant's effect on lentil, NT4 generally had no positive effect on any of the parameters assessed for wheat cv. Laura at any P level at 48 or 95 DAP. Similarly, there was no positive effect of NT4 on shoot or root growth, or AMF colonization of wheat cv. Neepawa plants at any P level at 48 DAP. However, NT4 inoculation increased the grain yield of Neepawa by 20% (P≤0.05) when fertilized with 20 mg P kg–1 soil. This yield increase was associated with a significant (P≤0.05) reduction in root biomass and a significant (P≤0.05) increase in the grain P content of inoculated plants. Thus, NT4 appears to have a preference for the Neepawa cultivar. Our results show that lentil was more dependent on mycorrhizae than wheat and responded to an AMF inoculant even in soil containing high levels of indigenous AMF. It might, therefore, be possible to develop mixed inoculants containing rhizobia and AMF for field production of legumes. Accepted: 22 February 1997  相似文献   

9.
Effects of inoculation with the arbuscular mycorrhizal (AM) fungus Glomus mosseae on the behavior of Hg in soil–plant system were investigated using an artificially contaminated soil at the concentrations of 0, 1.0, 2.0, and 4.0 mg Hg kg−1. Mercury accumulation was lower in mycorrhizal roots than in nonmycorrhizal roots when Hg was added at the rates of 2.0 and 4.0 mg kg−1, while no obvious difference in shoot Hg concentration was found between mycorrhizal and nonmycorrhizal treatments. Mycorrhizal inoculation significantly decreased the total and extractable Hg concentrations in soil as well as the ratio of extractable to total Hg in soil. Equilibration sorption of Hg by soil was investigated, and the results indicated that mycorrhizal treatment enhanced Hg sorption on soil. The uptake of Hg was lower by mycorrhizal roots than by nonmycorrhizal roots. These experiments provide further evidence for the role of mycorrhizal inoculation in increasing immobilization of Hg in soil and reducing the uptake of Hg by roots. Calculation on mass balance of Hg in soil suggests the presence of Hg loss from soil presumably through evaporation, and AM inoculation enhanced Hg evaporation. This was evidenced by a chamber study to detect the Hg evaporated from soil.  相似文献   

10.
A field study was done to assess the potential benefit of arbuscular mycorrhizal (AM) inoculation of elite strawberry plants on plant multiplication, under typical strawberry nursery conditions and, in particular, high soil P fertility (Mehlich-3 extractible P=498 mg kg−1). Commercially in vitro propagated elite plants of five cultivars (‘Chambly,’ ‘Glooscap,’ ‘Joliette,’ ‘Kent,’ and ‘Sweet Charlie’) were transplanted in noninoculated growth substrate or in substrate inoculated with Glomus intraradices or with a mixture of species (G. intraradices, Glomus mosseae, and Glomus etunicatum) at the acclimation stage and were grown for 6 weeks before transplantation in the field. We found that AM fungi can impact on plant productivity in a soil classified as excessively rich in P. Inoculated mother plants produced about 25% fewer daughter plants than the control in Chambly (P=0.03), and Glooscap produced about 50% more (P=0.008) daughter plants when inoculated with G. intraradices, while the productivity of other cultivars was not significantly decreased. Daughter plant shoot mass was not affected by treatments, but their roots had lower, higher, or similar mass, depending on the cultivar–inoculum combination. Root mass was unrelated to plant number. The average level of AM colonization of daughter plants produced by noninoculated mother plants did not exceed 2%, whereas plants produced from inoculated mothers had over 10% of their root length colonized 7 weeks after transplantation of mother plants and ∼6% after 14 weeks (harvest), suggesting that the AM fungi brought into the field by inoculated mother plants had established and spread up to the daughter plants. The host or nonhost nature of the crop species preceding strawberry plant production (barley or buckwheat) had no effect on soil mycorrhizal potential, on mother plant productivity, or on daughter plant mycorrhizal development. Thus, in soil excessively rich in P, inoculation may be the only option for management of the symbiosis.  相似文献   

11.
A greenhouse experiment was conducted to evaluate the effectiveness of arbuscular mycorrhizal (AM) fungi in phytoremediation of lead (Pb)-contaminated soil by vetiver grass. Experiment was a factorial arranged in a completely randomized design. Factors included four Pb levels (50, 200, 400, and 800 mg kg?1) as Pb (NO3)2, AM fungi at three levels (non mycorrhizal (NM) control, Rhizophagus intraradices, Glomus versiforme). Shoot and root dry weights (SDW and RDW) decreased as Pb levels increased. Mycorrhizal inoculation increased SDW and RDW compared to NM control. With mycorrhizal inoculation and increasing Pb levels, Pb uptake of shoot and root increased compared to those of NM control. Root colonization increased with mycorrhizal inoculation but decreased as Pb levels increased. Phosphorus concentration and uptake in shoot of plants inoculated with AM fungi was significantly higher than NM control at 200 and 800 mg Pb kg?1. The Fe concentration, Fe and Mn uptake of shoot in plants inoculated with Rhizophagus intraradices in all levels of Pb were significantly higher than NM control. Mycorrhizal inoculation increased Pb extraction, uptake and translocation efficiencies. Lead translocation factor decreased as Pb levels increased; however inoculation with AM fungi increased Pb translocation.  相似文献   

12.
Excess manganese (Mn) in soil is toxic to crops, but in some situations arbuscular mycorrhizal fungi (AMF) alleviate the toxic effects of Mn. Besides the increased phosphorus (P) uptake, mycorrhiza may affect the balance between Mn-reducing and Mn-oxidizing microorganisms in the mycorrhizosphere and affect the level of extractable Mn in soil. The aim of this work was to compare mycorrhizal and non-mycorrhizal plants that received extra P in relation to alleviation of Mn toxicity and the balance between Mn-oxidizing and Mn-reducing bacteria in the mycorrhizosphere. A clayey soil containing 508 mg kg−1 of extractable Mn was fertilized with 30 mg kg−1 (P1) or 45 mg kg−1 (P2) of soluble P. Soybean (Glycine max L. Merrill, cv. IAC 8-2) plants at P1 level were non-inoculated (CP1) or inoculated with either Glomus etunicatum (GeP1) or G. macrocarpum (GmP1), while plants at P2 level were left non-inoculated (CP2). Plants were grown in a greenhouse and harvested after 80 days. In the mycorrhizosphere of the GmP1 and GeP1 plants a shift from Mn-oxidizing to Mn-reducing bacteria coincided with higher soil extractability of Mn and Fe. However, the occurrence of Mn-oxidizing/reducing bacteria in the (mycor)rhizosphere was unrelated to Mn toxicity in plants. Using 16S rDNA sequence homologies, the Mn-reducing isolates were consistent with the genus Streptomyces. The Mn-oxidizers were homologous with the genera Arthrobacter, Variovorax and Ralstonia. While CP1 plants showed Mn toxicity throughout the whole growth period, CP2 plants never did, in spite of having Fe and Mn shoot concentrations as high as in CP1 plants. Mycorrhizal plants showed Mn toxicity symptoms early in the growth period that were no longer visible in later growth stages. The shoot P concentration was almost twice as high in mycorrhizal plants compared with CP1 and CP2 plants. The shoot Mn and Fe concentrations and contents were lower in GmP1 and GeP1 plants compared with the CP2 treatment, even though levels of extractable metals increased in the soil when plants were mycorrhizal. This suggests that mycorrhiza protected its host plant from excessive uptake of Mn and Fe. In addition, higher tissue P concentrations may have facilitated internal detoxification of Mn in mycorrhizal plants. The exact mechanisms acting on alleviation of Mn toxicity in mycorrhizal plants should be further investigated.  相似文献   

13.
A pot-culture experiment was carried out to investigate the effect of arbuscular mycorrhizal (AM) fungus (Glomus macrocarpum Tul. and Tul.) on plant growth and Cd2+uptake by Apium graveolens L. in soil with different levels of Cd2+. Mycorrhizal (M) and non-mycorrhizal (NM) plants were grown in soil with 0, 5, 10, 40 and 80 Cd2+ mg kg−1soil. The infectivity of the fungus was not affected by the presence of Cd2+ in the soil. M plants showed better growth and less Cd2+ toxicity symptoms. Cd2+ root : shoot ratio was higher in M plants than in NM plants. These differences were more evident at highest Cd2+ level (80 mg kg−1 soil). Chlorophyll a and chlorophyll b concentrations were significantly higher in AM-inoculated celery leaves. The dilution effect due to increased biomass, immobilization of Cd2+ in root and enhanced P-uptake in M plants may be related to attenuation of Cd2+toxicity in celery.  相似文献   

14.
Nitrogen isotope measurements may provide insights into changing interactions among plants, mycorrhizal fungi, and soil processes across environmental gradients. Here, we report changes in δ15N signatures due to shifts in species composition and nitrogen (N) dynamics. These changes were assessed by measuring fine root biomass, net N mineralization, and N concentrations and δ15N of foliage, fine roots, soil, and mineral N across six sites representing different post-deglaciation ages at Glacier Bay, Alaska. Foliar δ15N varied widely, between 0 and –2‰ for nitrogen-fixing species, between 0 and –7‰ for deciduous non-fixing species, and between 0 and –11‰ for coniferous species. Relatively constant δ15N values for ammonium and generally low levels of soil nitrate suggested that differences in ammonium or nitrate use were not important influences on plant δ15N differences among species at individual sites. In fact, the largest variation among plant δ15N values were observed at the youngest and oldest sites, where soil nitrate concentrations were low. Low mineral N concentrations and low N mineralization at these sites indicated low N availability. The most plausible mechanism to explain low δ15N values in plant foliage was a large isotopic fractionation during transfer of nitrogen from mycorrhizal fungi to plants. Except for N-fixing plants, the foliar δ15N signatures of individual species were generally lower at sites of low N availability, suggesting either an increased fraction of N obtained from mycorrhizal uptake (f), or a reduced proportion of mycorrhizal N transferred to vegetation (T r). Foliar and fine root nitrogen concentrations were also lower at these sites. Foliar N concentrations were significantly correlated with δ15N in foliage of Populus, Salix, Picea, and Tsuga heterophylla, and also in fine roots. The correlation between δ15N and N concentration may reflect strong underlying relationships among N availability, the relative allocation of carbon to mycorrhizal fungi, and shifts in either f or T r. Received: 14 December 1998 / Accepted: 16 August 1999  相似文献   

15.
This greenhouse study aimed to examine the contribution of arbuscular mycorrhizal (AM) colonization on the uptake of and tolerance to nickel (Ni) in sunflower (Helianthus annuus L.). We hypothesized that AM colonization increases Ni content and tolerance in sunflower grown under varying soil Ni concentrations. The combined effect of AM colonization and soil Ni input on the assimilation of nitrogen, in particular the activity of glutamine synthetase (GS), in sunflower plants was also investigated. A factorial experimental design was performed with sunflower cv. Lemon Queen, with or without the AM fungus, Glomus intraradices Schenck & Smith, and treated with 0, 100, 200, or 400 mg Ni kg−1 dry soil (DS). The AM colonization significantly enhanced plant growth and Ni content, especially at the lower soil Ni treatments. Furthermore, the AM plants exposed to the highest soil Ni level of 400 mg Ni kg−1 DS had a significantly higher shoot Ni extracted percentage than non-AM plants, suggesting that the AM symbiosis contributed to Ni uptake, then its translocation from roots to shoots. The AM colonization also significantly increased the GS activity in roots, this being likely an indicator of an enhanced Ni tolerance. These findings support the hypothesis that AM symbiosis contributes to an enhanced Ni plant uptake and tolerance and should be considered as part of phytoremediation strategies.  相似文献   

16.
17.
Pastures often experience a pulse of phosphorus (P) when fertilized. We examined the role of arbuscular mycorrhizal fungi (AMF) in the uptake of P from a pulse. Five legumes (Kennedia prostrata, Cullen australasicum, Bituminaria bituminosa, Medicago sativa and Trifolium subterraneum) were grown in a moderate P, sterilized field soil, either with (+AMF) or without (?AMF) addition of unsterilized field soil. After 9–10 weeks, half the pots received 15 mg P kg?1 of soil. One week later, we measured: shoot and root dry weights; percentage of root length colonized by AMF; plant P, nitrogen and manganese (Mn) concentrations; and rhizosphere carboxylates, pH and plant‐available P. The P pulse raised root P concentration by a similar amount in uncolonized and colonized plants, but shoot P concentration increased by 143% in uncolonized plants and 53% in colonized plants. Inoculation with AMF decreased the amount of rhizosphere carboxylates by 52%, raised rhizosphere pH by ~0.2–0.7 pH units and lowered shoot Mn concentration by 38%. We conclude that AMF are not simply a means for plants to enhance P uptake when P is limiting, but also act to maintain shoot P within narrow boundaries and can affect nutrient uptake through their influence on rhizosphere chemistry.  相似文献   

18.
Liu Y  Zhu YG  Chen BD  Christie P  Li XL 《Mycorrhiza》2005,15(3):187-192
We report for the first time some effects of colonization by an arbuscular mycorrhizal (AM) fungus (Glomus mosseae) on the biomass and arsenate uptake of an As hyperaccumulator, Pteris vittata. Two arsenic levels (0 and 300 mg As kg–1) were applied to an already contaminated soil in pots with two compartments for plant and hyphal growth in a glasshouse experiment. Arsenic application had little or no effect on mycorrhizal colonization, which was about 50% of root length. Mycorrhizal colonization increased frond dry matter yield, lowered the root/frond weight ratio, and decreased frond As concentration by 33–38%. Nevertheless, transfer of As to fronds showed a 43% increase with mycorrhizal colonization at the higher soil As level. Frond As concentrations reached about 1.6 g kg–1 (dry matter basis) in non-mycorrhizal plants in the As-amended soil. Mycorrhizal colonization elevated root P concentration at both soil As levels and mycorrhizal plants had higher P/As ratios in both fronds and roots than did non-mycorrhizal controls.  相似文献   

19.
Hobbie EA  Jumpponen A  Trappe J 《Oecologia》2005,146(2):258-268
Nitrogen isotopes (15N/14N ratios, expressed as δ15N values) are useful markers of the mycorrhizal role in plant nitrogen supply because discrimination against 15N during creation of transfer compounds within mycorrhizal fungi decreases the 15N/14N in plants (low δ15N) and increases the 15N/14N of the fungi (high δ15N). Analytical models of 15N distribution would be helpful in interpreting δ15N patterns in fungi and plants. To compare different analytical models, we measured nitrogen isotope patterns in soils, saprotrophic fungi, ectomycorrhizal fungi, and plants with different mycorrhizal habits on a glacier foreland exposed during the last 100 years of glacial retreat and on adjacent non-glaciated terrain. Since plants during early primary succession may have only limited access to propagules of mycorrhizal fungi, we hypothesized that mycorrhizal plants would initially be similar to nonmycorrhizal plants in δ15N and then decrease, if mycorrhizal colonization were an important factor influencing plant δ15N. As hypothesized, plants with different mycorrhizal habits initially showed similar δ15N values (−4 to −6‰ relative to the standard of atmospheric N2 at 0‰), corresponding to low mycorrhizal colonization in all plant species and an absence of ectomycorrhizal sporocarps. In later successional stages where ectomycorrhizal sporocarps were present, most ectomycorrhizal and ericoid mycorrhizal plants declined by 5–6‰ in δ15N, suggesting transfer of 15N-depleted N from fungi to plants. The values recorded (−8 to −11‰) are among the lowest yet observed in vascular plants. In contrast, the δ15N of nonmycorrhizal plants and arbuscular mycorrhizal plants declined only slightly or not at all. On the forefront, most ectomycorrhizal and saprotrophic fungi were similar in δ15N (−1 to −3‰), but the host-specific ectomycorrhizal fungus Cortinarius tenebricus had values of up to 7‰. Plants, fungi and soil were at least 4‰ higher in δ15N from the mature site than in recently exposed sites. On both the forefront and the mature site, host-specific ectomycorrhizal fungi had higher δ15N values than ectomycorrhizal fungi with a broad host range. From these isotopic patterns, we conclude:(1) large enrichments in 15N of many ectomycorrhizal fungi relative to co-occurring ectomycorrhizal plants are best explained by treating the plant-fungal-soil system as a closed system with a discrimination against 15N of 8–10‰ during transfer from fungi to plants, (2) based on models of 15N mass balance, ericoid and ectomycorrhizal fungi retain up to two-thirds of the N in the plant-mycorrhizal system under the N-limited conditions at forefront sites, (3) sporocarps are probably enriched in 15N by an additional 3‰ relative to available nitrogen, and (4) host-specific ectomycorrhizal fungi may transfer more N to plant hosts than non-host-specific ectomycorrhizal fungi. Our study confirms that nitrogen isotopes are a powerful tool for probing nitrogen dynamics between mycorrhizal fungi and associated plants.  相似文献   

20.
A pot experiment was conducted to examine the effect of arbuscular mycorrhizal fungus, Glomus fasciculatum, and salinity on the growth of Acacia nilotica. Plants were grown in soil under different salinity levels (1.2, 4.0, 6.5, and 9.5 dS m−1). In saline soil, mycorrhizal colonization was higher at 1.2, 4.0, and 6.5 dS m−1 salinity levels in AM-inoculated plants, which decreased as salinity levels further increased (9.5 dS m−1). Mycorrhizal plants maintained greater root and shoot biomass at all salinity levels compared to nonmycorrhizal plants. AM-inoculated plants had higher P, Zn, and Cu concentrations than uninoculated plants. In mycorrhizal plants, nutrient concentrations decreased with the increasing levels of salinity, but were higher than those of the nonmycorrhizal plants. Mycorrhizal plants had greater Na concentration at low salinity levels (1.2, 4.0 dS m−1), which lowered as salinity levels increased (6.5, 9.5 dS m−1), whereas Na concentration increased in control plants. Mycorrhizal plants accumulated a higher concentration of K at all salinity levels. Unlike Na, the uptake of K increased in shoot tissues of mycorrhizal plants with the increasing levels of salinity. Our results indicate that mycorrhizal fungus alleviates deleterious effects of saline soils on plant growth that could be primarily related to improved P nutrition. The improved K/Na ratios in root and shoot tissues of mycorrhizal plants may help in protecting disruption of K-mediated enzymatic processes under salt stress conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号