首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Ch21, a developmentally regulated low molecular weight protein observed in chick embryo skeletal tissues, is expressed "in vitro" by differentiating chondrocytes at a late stage of development. Here we report the complete amino acid sequence of the protein. 86% of the total amino acid sequence was deduced by sequences of 17 high performance liquid chromatography-separated proteolytic fragments and 33 amino acid residues at the amino-terminal end of protein purified from spent culture medium of hypertrophic chondrocytes. Furthermore we isolated by molecular cloning the corresponding cDNA and determined its nucleotide sequence. By combining protein and nucleotide sequence data we determined the primary structure of the entire Ch21. It consists of 158 amino acids and has a molecular mass of 18.065 kDa. Computer-assisted analysis showed that the Ch21 belongs to the superfamily of low molecular weight proteins sharing a basic framework for binding and transport of small hydrophobic molecules.  相似文献   

3.
A soluble inorganic pyrophosphatase was isolated from a crude extract of Microcystis aeruginosa by adsorption chromatography. The enzyme was purified to homogeneity as judged by sodium dodecyl sulfate (SDS) and nondenaturing polyacrylamide gel electrophoresis and N-terminal amino acid analysis. The molecular mass was estimated to be 80 kDa by gel filtration chromatography, 87 kDa by nondenaturing polyacrylamide gel electrophoresis, and 28 kDa by SDS-polyacrylamide gel electrophoresis. The enzyme has an isoelectric point of 4.5, which is similar to the pI values reported for other soluble inorganic pyrophosphatases. The sequence of 29 N-terminal amino acids was determined; only 4 of these amino acids are identical to those in the sequence of Saccharomyces cerevisiae inorganic pyrophosphatase. M. aeruginosa inorganic pyrophosphatase is a Mg(2+)-dependent enzyme exhibiting a pH optimum of around 7.5. Its KM value for inorganic pyrophosphate was estimated to be 1.30 mM. A specific antibody was raised in chicken to M. aeruginosa inorganic pyrophosphatase. No immunological cross-reactivity was seen when Western blots of partially purified S. cerevisiae or Escherichia coli inorganic pyrophosphatase were probed with the antibody.  相似文献   

4.
CheW is an essential component of the system which mediates chemotaxis in Salmonella typhimurium and Escherichia coli. Here we report the nucleotide sequence of the cheW gene as well as the purification and characterization of the CheW protein. The DNA sequence predicts a protein of 18,000 molecular weight. The pure protein exhibits an apparent molecular weight of 18,000 during sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Molecular sieve chromatography under nondenaturing conditions indicates a molecular weight of approximately 35,000, however. This result suggests that CheW is a homodimer. The predicted amino acid sequence between Thr-128 and Asp-160 fits a consensus exhibited by many proteins which bind purine nucleotides.  相似文献   

5.
Rabbit alpha 1-microglobulin was purified from the urine of sodium-chromate-treated animals by the use of gel chromatography on Sephadex G-100, affinity chromatography on concanavalin-A--Sepharose and ion-exchange chromatography on DEAE-Sephadex. Rabbit alpha 1-microglobulin had a molecular mass of 25.6 kDa on SDS/polyacrylamide gel electrophoresis. Alpha 1-microglobulin has previously been purified from the urine of humans, guinea-pigs and rats by similar methods, and the molecular masses of the four homologues were compared by SDS/polyacrylamide gel electrophoresis and gel chromatography in a denaturing medium. By these two methods the human homologue was 6 kDa and 3 kDa larger, respectively, than the other three proteins. Endoglycosidase F digestion of alpha 1-microglobulin, followed by SDS/polyacrylamide gel electrophoresis, revealed three protein bands in the human alpha 1-microglobulin sample, and only two bands in guinea-pig, rat and rabbit alpha 1-microglobulin, with a gap between each band of 2.6--2.9 kDa. The amino-terminal amino acid sequences of the four homologues were determined and between 72% and 81% homology was seen. The five amino-terminal amino acids present in the other species were missing in guinea-pig alpha 1-microglobulin. Our results indicate that human alpha 1-microglobulin is substituted with two N-linked oligosaccharides, while only one is attached to each of the other alpha 1-microglobulins, and that the extra glycosylamine-linked oligosaccharide in the human protein is attached to asparagine in position 17. Finally it is shown that all four homologues inhibit antigen stimulation of human lymphocytes, a finding which is consistent with our previous suggestion that the N-linked oligosaccharides carry the immunosuppressive activity of alpha 1-microglobulin.  相似文献   

6.
We used gel filtration chromatography, anion-exchange chromatography and polyacrylamide gel electrophoresis to purify tributyltin-binding protein type 2 (TBT-bp 2) from plasma of Japanese flounder (Paralichthys olivaceus) injected intraperitoneally with TBT (5.0 mg/kg body weight). Sodium dodecyl sulfate-polyacrylamide gel electrophoresis indicated that the molecular mass of TBT-bp 2 was approximately 48 kDa, and isoelectric focusing-polyacrylamide gel electrophoresis indicated that the isoelectric point was approximately 3.0. TBT-bp 2 contained 40% N-glycan. The complete cDNA nucleotide sequence and the genome sequence of TBT-bp 2 were determined by means of rapid amplification of cDNA ends of liver tissue of Japanese flounder and a genome-walking technique, respectively. The 216 amino acid sequence of TBT-bp 2 showed 47% identity to the sequences of puffer fish (Takifugu pardalis) saxitoxin- and tetrodotoxin-binding protein but only 27% similarity to the sequence of TBT-bp 1. Analysis of the motif sequence of the amino acid sequence and the structure of the gene encoding TBT-bp 2 suggested that this protein belongs to the lipocalin superfamily.  相似文献   

7.
A gene encoding a nonspecific phosphatase, named PhoN-Sf, was identified on the large virulence plasmid (pMYSH6000) of Shigella flexneri 2a YSH6000. The phosphatase activity in YSH6000 was observed under high-phosphate conditions. However, it was found that low-phosphate conditions induced a slightly higher level of activity. The nucleotide sequence of the phoN-Sf region cloned from pMYSH6000 possessing the phoN-Sf gene encoded 249 amino acids with a typical signal sequence at the N terminus. The deduced amino acid sequence of the PhoN-Sf protein revealed significant homology to sequences of nonspecific acid phosphatases of other bacteria, such as Providencia stuartii (PhoN, 83.2%), Morganella morganii (PhoC, 80.6%), Salmonella typhimurium (PhoN, 47.8%), and Zymomonas mobilis (PhoC, 34.8%). The PhoN-Sf protein was purified, and its biochemical properties were characterized. The apparent molecular mass of the protein on sodium dodecyl sulfate-polyacrylamide gel electrophoresis was calculated to be 27 kDa. The 20 amino acids at the N terminus corresponded to the 20 amino acid residues following the putative signal sequence of PhoN-Sf protein deduced from the nucleotide sequence. The PhoN-Sf activity had a pH optimum of 6.6, and the optimum temperature was 37 degrees C. The enzymatic activity was inhibited by diisopropyl fluorophosphate, N-bromosuccinimide, or dithiothreitol but not by EDTA. The subcellular localization of the PhoN-Sf protein in YSH6000 revealed that the protein was found predominantly in the periplasm. Examination of Shigella and enteroinvasive Escherichia coli strains for PhoN-Sf production by immunoblotting with the PhoN-specific antibody and for the presence of phoN-Sf DNA by using a phoN-Sf probe indicated that approximately one-half of the strains possessed the phoN-Sf gene on the large plasmid and expressed the PhoN-Sf protein. The Tn5 insertion mutants of YSH6000 possessing phoN-Sf::Tn5 still retained wild-type levels of invasiveness, as well as the subsequent spreading capacity in MK2 epithelial cell monolayers, thus suggesting that the PhoN-Sf activity is not involved in expression of the virulence phenotypes of Shigella strains under in vitro conditions.  相似文献   

8.
The major protein present in the isolated outer membrane of Treponema pectinovorum ATCC 33768, MompA, was identified, purified, and characterized. Immuno-gold electron microscopy, using anti-MompA serum, and cell fractionation experiments confirmed the localization of MompA to the outer membrane. MompA was determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis to have a molecular mass of 42 kDa when heat denatured, whereas native MompA formed a number of detergent-stable forms with molecular masses of 71, 76, and 83 kDa. A temperature of 60 degrees C was required to convert the native protein to the 42-kDa form. A number of detergents and chemical agents that are capable of breaking ionic and hydrogen bonds of proteins did not convert native MompA to the 42-kDa species. The native forms of the protein were resistant to the combined action of proteinase K, trypsin, and chymotrypsin, whereas the 42-kDa form of MompA was not. The N-terminal amino acid sequence of MompA was determined to be DVTVNINSRVRPVLYTT, and database searches did not identify any homology with known protein sequences. Amino acid compositional analysis showed the protein to be rich in proline and glycine, with these amino acids accounting for 28 and 13%, respectively, of the total amino acids. Antiserum raised against the major outer membrane protein of T. denticola GM-1 and ATCC 35405 did not cross-react with MompA, and antiserum raised against MompA did not react with any cellular components of Treponema denticola, Treponema vincentii, or Treponema socranskii. A major outer membrane protein similar in molecular mass to MompA was identified in eight clinical isolates of T. pectinovorum. The major outer membrane protein produced by four of the clinical isolates reacted strongly, by Western blotting, with anti-MompA serum, whereas proteins of the other strains did not.  相似文献   

9.
The biosynthesis of yeast 5-aminolevulinate (ALA) synthase, a mitochondrial protein encoded by the nuclear HEM1 gene, has been studied in vitro in a cell-free translation system and in vivo in whole cells. In vitro translation of mRNA hybrid-selected by the cloned HEM1 gene, or of total RNA followed by immunoprecipitation with anti-(ALA synthase) antibody yielded a single polypeptide of higher molecular mass than the purified ALA synthase. This larger form, also seen in pulse-labeled cells, can be post-translationally processed by isolated mitochondria. These results show that the cytoplasmically made ALA synthase is synthesized with a cleavable extension which was estimated to be about 3.5 kDa by sodium dodecyl sulfate polyacrylamide gel electrophoresis. The complete nucleotide sequence of the HEM1 gene and its flanking regions was determined. The 5' ends of the HEM1 mRNAs map from -76 to -63 nucleotides upstream of the translation initiation codon. The open reading frame of 1644 base pairs encodes a protein of 548 amino acids with a calculated Mr of 59,275. The predicted amino-terminal sequence of the protein is strongly basic (five basic and no acidic amino acids within the first 35 residues), rich in serine and threonine and must represent the transient presequence that targets this protein to the mitochondria. Comparison of deduced amino acid sequences indicates a clear homology between the mature yeast and chick embryo liver ALA synthases.  相似文献   

10.
11.
Purification and cDNA cloning of rat 6-pyruvoyl-tetrahydropterin synthase   总被引:2,自引:0,他引:2  
6-Pyruvoyl-tetrahydropterin synthase, which catalyzes the second step in the biosynthesis of tetrahydrobiopterin, was purified approximately 18,000-fold to apparent homogeneity from rat liver. The molecular mass of the native enzyme was estimated to be 83 kDa by gel filtration. The enzyme showed a single band on sodium dodecyl sulfate-polyacrylamide gel electrophoresis corresponding to a molecular mass of 17 kDa. Up to 24 residues of the NH2-terminal sequence were determined by Edman degradation, which released a single amino acid at each step. These results indicate that the enzyme consists of identical subunits. The purified enzyme was digested with lysyl endopeptidase or V8 protease, and 11 peptide fragments were isolated. On the basis of the sequences of these peptides, oligonucleotides were synthesized and used to screen a rat liver cDNA library, and one cDNA clone was isolated. The complete nucleotide sequence of the 1176-base pair cDNA was then determined. The deduced amino acid sequence contained 144 amino acid residues, but a NH2-terminal four-amino acid sequence was not found in the purified protein. Therefore, the mature protein consists of 140 amino acids. A single mRNA band of 1.3 kilobases was obtained by RNA blot analysis of rat liver. The predicted amino acid sequence of 6-pyruvoyl-tetrahydropterin synthase was compared with the Protein Sequence Database of the National Biomedical Research Foundation, revealing significant local similarity to large T antigens from the polyomavirus family.  相似文献   

12.
Chromosomal basic proteins were isolated from amoebal and plasmodial stages of the acellular slime mold Physarum polycephalum. Polyacrylamide electrophoresis on high resolution acid-urea gels separated the five histone fractions in the sequence H1, H2A, H2B, H3, and H4. Under these electrophoretic conditions Physarum histones migrated more like plant (rye) than animal (calf) histones. Furthermore, Physarum histones H1, H2A, and H2B have higher molecular weights on sodium dodecyl sulfate (SDS) gels than the corresponding calf fractions. No differences were detected between amoebal and plasmodial histones on either acid-urea or SDS-polyacrylamide gel electrophoresis. Amoebal basic proteins were fractionated by exclusion chromatography. The five histone fractions plus another major acid-soluble chromosomal protein (AS) were isolated. The Physarum core histones had amino acid compositions more closely resembling those of the calf core histones than of rye, yeast, or Dictyostelium. Although generally similar in composition to the plant and animal H1 histones, the Physarum H1 had a lower lysine content. The AS protein was extracted with 5% perchloric acid or 0.5 M NaCl, migrated between histones H3 and H4 on acid-urea polyacrylamide gels, and had an apparent molecular weight of 15 900 on SDS gels. It may be related to a protein migrating near H1. Both somewhat resembled the high mobility group proteins in amino acid composition.  相似文献   

13.
The major outer-membrane proteins of 40-41 kDa were identified by sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) in Fusobacterium nucleatum strains ATCC 10953, ATCC 25586, F3, F6 and Fev1. The proteins were purified by preparative gel electrophoresis. Their behaviour in gel filtration and gel electrophoresis, their sensitivity to proteolytic enzymes, and their amino acid composition were investigated. The purified proteins were partly sequenced from the N-terminal end. A 36.5 kDa portion was protected against extrinsic proteolytic (trypsin, chymotrypsin or pronase) digestion of whole cells. This polypeptide was isolated and partially sequenced from the N-terminal end. From these data and data from extrinsic iodination it was concluded that the N-terminal end of the protein is probably exposed on the surface of the cell. A database search revealed amino acid sequence similarity in an Ala-Pro-rich region of outer-membrane protein A (OmpA) in other Gram-negative bacteria.  相似文献   

14.
1. Protein extracts obtained from Salmonella minnesota Re mutant cells by treatment with EDTA/NaC1 solution contain a protein which exhibits high affinity to bacterial lipopolysaccharides. The isolation and partial characterization of this lipopolysaccharide-binding protein is described. 2. The protein was purified from EDTA extracts by a two-step procedure consisting of ion-exchange chromatography on CM-Sephadex and preparative polyacrylamide gel electrophoresis at pH 9.5. The yield of the total purification procedure was around 16%. 3. The resulting protein preparation was homogeneous on the basis of disc gel electrophoresis, dodecylsulfate gel electrophoresis, isoelectric focusing in polyacrylamide gel and immunoelectrophoresis. 4. The isoelectric point of the protein was found to be 10.3 at 4 degrees C. Its molecular weight determined by dodecylsulfate gel electrophoresis is 15000. Its amino acid composition is characterized by the absence of histidine and proline, a low content in tyrosine and high amounts of alanine, lysine, aspartic and glutamic acid residues, or their respective amides. 5. The lipopolysaccharide-protein association was shown to be mainly due to ionic interactions of the basic protein with negatively charged groups (probably phosphate and pyrophosphate groups) of the lipid A moiety. 6. Purified lipopolysaccharide-binding protein is immunogenic in rabbits, thus enabling the preparation of specific antiserum. 7. The protein is located at the surface of Salmonella minnesota Re mutant cells as revealed by antiserum absorption with total bacteria. Ferritin-labelling studies further demonstrated that it is evenly spread over the entire cell surface. 8. Comparative antiserum absorption studies using smooth and rough strains of Salmonella minnesota, Salmonella typhimurium, Escherichia coli, Klebsiella and Shigella revealed the presence of lipopolysaccharide-binding protein (or a serologically cross-reacting antigen) in most of the strains tested. From these results the protein can be considered as a common antigen of Enterobacteriaceae.  相似文献   

15.
The flagellar hook–basal body (HBB) complex of the Gram-positive bacterium Bacillus subtilis was purified and analysed by electron microscopy, gel electrophoresis, and amino acid sequencing of the major component proteins. The purified HBB complex consisted of the inner (M and S) rings, a rod and a hook. There were no outer (P and L) rings that are found in Gram-negative bacteria. The hook was 15 nm in thickness and 70 nm in length, which is thinner and longer than the hook of Salmonella typhimurium . The hook protein had an apparent molecular mass of 29 kDa, and its N-terminal sequence was identical to that of B. subtilis FlgG, which was previously reported as a rod protein. The sequence of the reported FlgG protein of B. subtilis is more closely related to that of FlgE (the hook protein) rather than FlgG (the rod protein) of S. typhimurium , in spite of the difference of the apparent molecular masses between the two hook proteins (29 kDa versus 42 kDa). The hook–basal body contained six major proteins (with apparent molecular masses of 82, 59, 35, 32, 29 and 20 kDa) and two minor proteins (23 kDa and 13 kDa), which consistently appeared from preparation to preparation. The N-terminus of each of these proteins was sequenced. Comparison with protein databases revealed the following polypeptide–gene correspondences: 82 kDa, fliF ; 59 kDa, flgK ; 35 kDa, orfF ; 32 kDa, yqhF ; 23 kDa, orf3 of the flaA locus; 20 kDa, flgB and flgC ; 13 kDa, not determined. The band at 20 kDa was a mixture of FlgB and FlgC, as revealed by two-dimensional gel analysis. Characteristic features of B. subtilis HBB are discussed in comparison with those of S. typhimiurium .  相似文献   

16.
The complete nucleotide sequence of two Chloroflexus aurantiacus reaction-center genes has been obtained. The amino acid sequence deduced from the first gene showed 40% similarity to the L subunit of the Rhodobacter sphaeroides reaction center. This L subunit was 310 amino acids long and had an approximate molecular mass of 35 kDa. The second gene began 17 bases downstream from the first gene. The amino acid sequence deduced from it (307 amino acids; 34950 Da) was 42% similar to the M subunit of the Rhodobacter sphaeroides reaction center. 20% of the deduced primary structure were confirmed through automated Edman degradation of cyanogen bromide peptide fragments or N-chlorosuccinimide peptide fragments isolated from the purified reaction-center complex or from the individual subunits. The peptides were isolated by preparative gel electrophoresis combined with molecular sieve chromatography in the presence of a mixture of formic acid, acetonitrile, 2-propanol and water. This method appeared to be applicable to the isolation of other hydrophobic proteins and their peptides.  相似文献   

17.
18.
When 10 strains of lactic acid bacteria were incubated with 5'-hydroxyaverantin (HAVN), a precursor of aflatoxins, seven of them converted HAVN to averufin; the same reaction is found in aflatoxin biosynthesis of aflatoxigenic fungi. These bacteria had a dehydrogenase that catalyzed the reaction from HAVN to 5'-oxoaverantin (OAVN), which was so unstable that it was easily converted to averufin. The enzyme was purified from Lactobacillus brevis IFO 12005. The molecular mass of the enzyme was 100 kDa on gel filtration chromatography and 33 kDa on SDS polyacrylamide gel electrophoresis (SDS-PAGE). The gene encoding the enzyme was cloned and sequenced. The deduced protein consisted of 249 amino acids, and its estimated molecular mass was 25,873, in agreement with that by time of flight mass spectrometry (TOF MS) analysis. Although the deduced amino acid sequence showed about 50% identity to those reported for alcohol dehydrogenases from L. brevis or L. kefir, the commercially available alcohol dehydrogenase from L. kefir did not convert HAVN to OAVN. Aspergillus parasiticus HAVN dehydrogenase showed about 25% identity in amino acid sequence with the dehydrogenase and also with these two alcohol dehydrogenases.  相似文献   

19.
A gene-encoding imidase was isolated from Pseudomonas putdia YZ-26 genomic DNA using a combination of polymerase chain reaction and activity screening the recombinant. Analysis of the nucleotide sequence revealed that an open reading frame (ORF) of 879 bp encoded a protein of 293 amino acids with a calculated molecular weight of 33712.6 kDa. The deduced amino-acid sequence showed 78% identity with the imidase from Alcaligenes eutrophus 112R4 and 80% identity with N-terminal 20 amino-acid imidase from Blastobacter sp. A17p-4. Next, the ORF was subcloned into vector pET32a to form recombinant plasmid pEI. The enzyme was overexpressed in Escherichia coli and purified to homogeneity by Ni2+–NTA column, with 75% activity recovery. The subunit molecular mass of the recombinant imidase as estimated by sodium dodecyl sulfate–polyacrylamide gel electrophoresis was approximately 36 kDa, whereas its functional unit was approximately 141 kDa with four identical subunits determined by size-exclusion chromatography. The purified enzyme showed the highest activity and affinity toward succinimide, and some other substrates, such as dihydrouracil, hydantoin, succinimide, and maleimde, were investigated.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号