首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
Hard carbons (HCs) are the most promising candidate anode materials for emerging Na‐ion batteries (NIBs). HCs are composed of misaligned graphene sheets with plentiful nanopores and defects, imparting a complex correlation between its structure and sodium‐storage behavior. The currently debated mechanism of Na+‐ion insertion in HCs hinders the development of high‐performance NIBs. In this article, ingenious and reliable strategies are used to elaborate the correlation between the structure and electrochemical performance and further illuminate the sodium‐storage mechanism in HCs. First, filling sulfur into the micropores of HCs can remove the low‐voltage plateau, providing solid evidence for its association with the pore‐filling mechanism. Along with the decreased concentration of defects/heteroatoms at higher treatment temperature, the reduced sloping capacity confirms the adsorption mechanism in the sloping region. Finally, the similar sodium‐insertion behaviors of HCs with ether‐based and ester‐based electrolytes indicate that no Na+ ions intercalate between the graphene layers. The determined adsorption‐pore‐filling mechanism encourages the design of more efficient HC anode materials with high capacity for high‐energy NIBs.  相似文献   

2.
Hard carbon has long been considered the leading candidate for anode materials of Na‐ion batteries. Intensive research efforts have been carried out in the search of suitable carbon structure for an improved storage capability. Herein, an anode based on multishelled hollow carbon nanospheres, which are able to deliver an outstanding electrochemical performance with an extraordinary reversible capacity of 360 mAh g?1 at 30 mA g?1, is designed. An interesting dependence of the electrochemical properties on the multishelled structural features is identified: with an increase in the shell number of the model carbon materials, the sloping capacity in the charge/discharge curve remains almost unchanged while the plateau capacity continuously increases, suggesting an adsorption‐filling Na‐storage mechanism for the multishelled hollow hard carbon materials. The findings not only provide new perspective in the structural design of high‐performance anode materials, but also shed light on the complicated mechanism behind Na‐storage by hard carbon.  相似文献   

3.
Hard carbon is a standard anode material for Na‐ion batteries. However, its low crystallinity and diverse microstructures make obtaining a full understanding of the sodium storage mechanism challenging. Here, the results of a systematic ex situ small and wide angle X‐ray scattering study of a series of nanostructured hard carbons, which reveal clear evidence of sodium storage in the graphene–graphene interlayers and nanopores, are presented. Particularly, an emergence of a broad peak around q ≈ 2.0–2.1 Å?1 in the low voltage region is suggested to be an indicator that sodium is densely confined in the nanopores. Thus, classical X‐ray scattering techniques are demonstrated to be effective in elucidating the overall reaction scheme of Na insertion into hard carbon.  相似文献   

4.
Hard carbon (HC) is the state‐of‐the‐art anode material for sodium‐ion batteries (SIBs). However, its performance has been plagued by the limited initial Coulombic efficiency (ICE) and mediocre rate performance. Here, experimental and theoretical studies are combined to demonstrate the application of lithium‐pretreated HC (LPHC) as high‐performance anode materials for SIBs by manipulating the solid electrolyte interphase in tetraglyme (TEGDME)‐based electrolyte. The LPHC in TEGDME can 1) deliver > 92% ICE and ≈220 mAh g?1 specific capacity, twice of the capacity (≈100 mAh g?1) in carbonate electrolyte; 2) achieve > 85% capacity retention over 1000 cycles at 1000 mA g?1 current density (4 C rate, 1 C = 250 mA g?1) with a specific capacity of ≈150 mAh g?1, ≈15 times of the capacity (10 mAh g?1) in carbonate. The full cell of Na3V2(PO4)3‐LPHC in TEGDME demonstrated close to theoretical specific capacity of ≈98 mAh g?1 based on Na3V2(PO4)3 cathode, ≈2.5 times of the value (≈40 mAh g?1) with nontreated HC. This work provides new perception on the anode development for SIBs.  相似文献   

5.
In response to the change of energy landscape, sodium‐ion batteries (SIBs) are becoming one of the most promising power sources for the post‐lithium‐ion battery (LIB) era due to the cheap and abundant nature of sodium, and similar electrochemical properties to LIBs. The electrochemical performance of electrode materials for SIBs is closely bound up with their crystal structures and intrinsic electronic/ionic states. Apart from nanoscale design and conductive composite strategies, heteroatom doping is another effective way to enhance the intrinsic transfer characteristics of sodium ions and electrons in crystal structures to accelerate reaction kinetics and thereby achieve high performance. In this review, the recent advancements in heteroatom doping for sodium ion storage of electrode materials are reviewed. Specifically, different doping strategies including nonmetal element doping (e.g., nitrogen, sulfur, phosphorous, boron, fluorine), metal element doping (magnesium, titanium, iron, aluminum, nickel, copper, etc.), and dual/triple doping (such as N–S, N–P, N–S–P) are reviewed and summarized in detail. Furthermore, various doping methods are introduced and their advantages and disadvantages are discussed. The doping effect on crystal structure and intrinsic electronic/ionic state are illustrated and the relationship with capacity and energy/power density is interrogated. Finally, future development trends in doping strategies for advanced SIBs electrodes are analyzed.  相似文献   

6.
7.
Disordered carbons have captured extensive interest as anode materials for Na‐ion batteries (NIBs) due to the abundant resources, competitive specific capacity, and low cost. Here, a facile strategy of pre‐oxidation is successfully adopted to tune the microstructure of carbon anode to facilitate sodium storage. Pitch is selected as the low‐cost and high carbon yield precursor. An easy pre‐oxidation treatment in air can enable pitch to realize an effective structural conversion from ordered to disordered at further carbonization processes. Compared with the carbonized pristine pitch, the carbonized pre‐oxidation pitch increases the carbon yield from 54 to 67%, the sodium storage capacity from 94.0 to 300.6 mAh g?1, and the initial Coulombic efficiency from 64.2 to 88.6%. Experiment results reveal that the introduction of oxygen based functional groups is the key to achieve the highly disordered structure, not only ensuring the cross‐linkage during low‐temperature pre‐oxidation process but also suppressing the carbon structure from melting and rearranging in the high‐temperature carbonization process. Most importantly, this facile pre‐oxidation strategy can also be extended to other carbon precursors to facilitate the low‐cost and high‐performance disordered carbon anodes for NIBs and beyond.  相似文献   

8.
Hard carbon as a typical anode material for sodium ion batteries has received much attention in terms of its low cost and renewability. Herein, phosphorus‐functionalized hard carbon with a specific “honeycomb briquette” shaped morphology is synthesized via electrospinning technology. When applied as an anode material for Na+ storage, it exhibits an impressively high reversible capacity of 393.4 mA h g?1 with the capacity retention up to 98.2% after 100 cycles. According to first‐principle calculation, the ultrahigh capacity of the as‐prepared anode is ascribed to the enhancement of Na‐absorption through formation of P?O and P? C bonds in graphitic layers when doped with phosphorus. Moreover, the increase of electron density around the Fermi level is found to be mainly caused by O atoms instead of P atoms.  相似文献   

9.
Hard carbon is one of the most promising anode materials for sodium‐ion batteries, but the low Coulombic efficiency is still a key barrier. In this paper, a series of nanostructured hard carbon materials with controlled architectures is synthesized. Using a combination of in situ X‐ray diffraction mapping, ex situ nuclear magnetic resonance (NMR), electron paramagnetic resonance, electrochemical techniques, and simulations, an “adsorption–intercalation” mechanism is established for Na ion storage. During the initial stages of Na insertion, Na ions adsorb on the defect sites of hard carbon with a wide adsorption energy distribution, producing a sloping voltage profile. In the second stage, Na ions intercalate into graphitic layers with suitable spacing to form NaC x compounds similar to the Li ion intercalation process in graphite, producing a flat low voltage plateau. The cation intercalation with a flat voltage plateau should be enhanced and the sloping region should be avoided. Guided by this knowledge, nonporous hard carbon material has been developed which has achieved high reversible capacity and Coulombic efficiency to fulfill practical application.  相似文献   

10.
Hard carbons are considered among the most promising anode materials for Na‐ion batteries. Understanding their structure is of great importance for optimizing their Na storage capabilities and therefore achieving high performance. Herein, carbon nanofibers (CNFs) are prepared by electrospinning and their microstructure, texture, and surface functionality are tailored through carbonization at various temperatures ranging from 650 to 2800 °C. Stepwise carbonization gradually removes the heteroatoms and increases the graphitization degree, enabling us to monitor the corresponding electrochemical performance for establishing a correlation between the CNFs characteristics and Na storage behavior. Outstandingly, it is found that for CNFs carbonized at above 2000 °C, a single voltage Na uptake plateau at ≈0.1 V with a capacity of ≈200 mAh g‐1. This specific performance may be nested in the higher degree of graphitization, lower active surface area, and different porous texture of the CNFs at such temperatures. It is demonstrated via the assembly of a CNF/Na2Fe2(SO4)3 cell the benefit of such CNFs electrode for enhancing the energy density of full Na‐ion cells. This finding sheds new insights in the quest for high performance carbon based anode materials.  相似文献   

11.
Carbon materials have attracted significant attention as anode materials for sodium ion batteries (SIBs). Developing a carbon anode with long‐term cycling stability under ultrahigh rate is essential for practical application of SIBs in energy storage systems. Herein, sulfur and nitrogen codoped mesoporous hollow carbon spheres are developed, exhibiting high rate performance of 144 mA h g?1 at 20 A g?1, and excellent cycling durability under ultrahigh current density. Interestingly, during 7000 cycles at a current density of 20 A g?1, the capacity of the electrode gradually increases to 180 mA h g?1. The mechanisms for the superior electrochemical performance and capacity improvement of the cells are studied by electrochemical tests, ex situ transmission electron microscopy, X‐ray diffraction, X‐ray photoelectron spectroscopy, and Raman analysis of fresh and cycled electrodes. The unique and robust structure of the material can enhance transport kinetics of electrons and sodium ions, and maintain fast sodium storage from the capacitive process under high rate. The self‐rearrangement of the carbon structure, induced by continuous discharge and charge, lead to the capacity improvement with cycles. These results demonstrate a new avenue to design advanced anode materials for SIBs.  相似文献   

12.
Lithium‐ion batteries (LIBs) with outstanding energy and power density have been extensively investigated in recent years, rendering them the most suitable energy storage technology for application in emerging markets such as electric vehicles and stationary storage. More recently, sodium, one of the most abundant elements on earth, exhibiting similar physicochemical properties as lithium, has been gaining increasing attention for the development of sodium‐ion batteries (SIBs) in order to address the concern about Li availability and cost—especially with regard to stationary applications for which size and volume of the battery are of less importance. Compared with traditional intercalation reactions, conversion reaction‐based transition metal oxides (TMOs) are prospective anode materials for rechargeable batteries thanks to their low cost and high gravimetric specific capacities. In this review, the recent progress and remaining challenges of conversion reactions for LIBs and SIBs are discussed, covering an overview about the different synthesis methods, morphological characteristics, as well as their electrochemical performance. Potential future research directions and a perspective toward the practical application of TMOs for electrochemical energy storage are also provided.  相似文献   

13.
The ever‐increasing demand for large‐scale energy storage systems requires novel battery technologies with low‐cost and sustainable properties. Due to earth‐abundance and cost effectiveness, the development of rechargeable potassium ion batteries (PIBs) has recently attracted much attention. Since carbon‐based materials are abundant, inexpensive, nontoxic, and safe, extensive feasibility investigations have suggested that they can become promising anode materials for PIBs. This review not only attempts to provide better understanding of the potassium storage mechanism, but also summarizes the availability of new carbon‐based materials and their electrochemical performance covering graphite, graphene, and hard carbon materials plus carbon‐based composites. Finally, the critical issues, challenges, and perspectives are discussed to demonstrate the developmental direction of PIBs.  相似文献   

14.
The electrochemical performance of mesoporous carbon (C)/tin (Sn) anodes in Na‐ion and Li‐ion batteries is systematically investigated. The mesoporous C/Sn anodes in a Na‐ion battery shows similar cycling stability but lower capacity and poorer rate capability than that in a Li‐ion battery. The desodiation potentials of Sn anodes are approximately 0.21 V lower than delithiation potentials. The low capacity and poor rate capability of C/Sn anode in Na‐ion batteries is mainly due to the large Na‐ion size, resulting in slow Na‐ion diffusion and large volume change of porous C/Sn composite anode during alloy/dealloy reactions. Understanding of the reaction mechanism between Sn and Na ions will provide insight towards exploring and designing new alloy‐based anode materials for Na‐ion batteries.  相似文献   

15.
Since their commercialization by Sony in 1991, graphite anodes in combination with various cathodes have enabled the widespread success of lithium‐ion batteries (LIBs), providing over 10 billion rechargeable batteries to the global population. Next‐generation nonaqueous alkali metal‐ion batteries, namely sodium‐ion batteries (SIBs) and potassium‐ion batteries (PIBs), are projected to utilize intercalation‐based carbon anodes as well, due to their favorable electrochemical properties. While traditionally graphite anodes have dominated the market share of LIBs, other carbon materials have been investigated, including graphene, carbon nanotubes, and disordered carbons. The relationship between carbon material properties, electrochemical performance, and charge storage mechanisms is clarified for these alkali metal‐ion batteries, elucidating possible strategies for obtaining enhanced cycling stability, specific capacity, rate capability, and safety aspects. As a key component in determining cell performance, the solid electrolyte interphase layer is described in detail, particularly for its dependence on the carbon anode. Finally, battery safety at extreme temperatures is discussed, where carbon anodes are susceptible to dendrite formation, accelerated aging, and eventual thermal runaway. As society pushes toward higher energy density LIBs, this review aims to provide guidance toward the development of sustainable next‐generation SIBs and PIBs.  相似文献   

16.
The development of alternative anode materials with higher volumetric and gravimetric capacity allowing for fast delithiation and, even more important, lithiation is crucial for next‐generation lithium‐ion batteries. Herein, the development of a completely new active material is reported, which follows an insertion‐type lithiation mechanism, metal‐doped CeO2. Remarkably, the introduction of carefully selected dopants, herein exemplified for iron, results in an increase of the achievable capacity by more than 200%, originating from the reduction of the dopant to the metallic state and additional space for the lithium ion insertion due to a significant off‐centering of the dopant atoms in the crystal structure, away from the original Ce site. In addition to the outstanding performance of such materials in high‐power lithium‐ion full‐cells, the selective reduction of the iron dopant under preservation of the crystal structure of the host material is expected to open up a new field of research.  相似文献   

17.
18.
Over the last decade, Na‐ion batteries have been extensively studied as low‐cost alternatives to Li‐ion batteries for large‐scale grid storage applications; however, the development of high‐energy positive electrodes remains a major challenge. Materials with a polyanionic framework, such as Na superionic conductor (NASICON)‐structured cathodes with formula NaxM2(PO4)3, have attracted considerable attention because of their stable 3D crystal structure and high operating potential. Herein, a novel NASICON‐type compound, Na4MnCr(PO4)3, is reported as a promising cathode material for Na‐ion batteries that deliver a high specific capacity of 130 mAh g?1 during discharge utilizing high‐voltage Mn2+/3+ (3.5 V), Mn3+/4+ (4.0 V), and Cr3+/4+ (4.35 V) transition metal redox. In addition, Na4MnCr(PO4)3 exhibits a high rate capability (97 mAh g?1 at 5 C) and excellent all‐temperature performance. In situ X‐ray diffraction and synchrotron X‐ray diffraction analyses reveal reversible structural evolution for both charge and discharge.  相似文献   

19.
Hard carbons (HCs) are promising anodes of sodium‐ion batteries (SIBs) due to their high capacity, abundance, and low cost. However, the sodium storage mechanism of HCs remains unclear with no consensus in the literature. Here, based on the correlation between the microstructure and Na storage behavior of HCs synthesized over a wide pyrolysis temperature range of 600–2500 °C, an extended “adsorption–insertion” sodium storage mechanism is proposed. The microstructure of HCs can be divided into three types with different sodium storage mechanisms. The highly disordered carbon, with d002 (above 0.40 nm) large enough for sodium ions to freely transfer in, has a “pseudo‐adsorption” sodium storage mechanism, contributing to sloping capacity above 0.1 V, together with other conventional “defects” (pores, edges, heteroatoms, etc.). The pseudo‐graphitic carbon (d‐spacing in 0.36–0.40 nm) contributes to the low‐potential (<0.1 V) plateau capacity through “interlayer insertion” mechanism, with a theoretical capacity of 279 mAh g?1 for NaC8 formation. The graphite‐like carbon with d002 below 0.36 nm is inaccessible for sodium ion insertion. The extended “adsorption–insertion” model can accurately explain the dependence of the sodium storage behavior of HCs with different microstructures on the pyrolysis temperature and provides new insight into the design of HC anodes for SIBs.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号