首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Photoinduced charge generation (PCG) dynamics are notoriously difficult to correlate with specific molecular properties in device relevant polymer:fullerene organic photovoltaic blend films due to the highly complex nature of the solid state blend morphology. Here, this study uses six judiciously selected trifluoromethylfullerenes blended with the prototypical polymer poly(3‐hexylthiophene) and measure the PCG dynamics in 50 fs–500 ns time scales with time‐resolved microwave conductivity and femtosecond transient absorption spectroscopy. The isomeric purity and thorough chemical characterization of the fullerenes used in this study allow for a detailed correlation between molecular properties, driving force, local intermolecular electronic coupling and, ultimately, the efficiency of PCG yield. The findings show that the molecular design of the fullerene not only determines inter‐fullerene electronic coupling, but also influences the decay dynamics of free holes in the donor phase even when the polymer microstructure remains unchanged.  相似文献   

2.
Selective dye loading at the polymer/fullerene interface was studied for ternary blend bulk heterojunction solar cells, consisting of regioregular poly(3‐hexylthiophene) (RR‐P3HT), a fullerene derivative (PCBM), and a silicon phthalocyanine derivative (SiPc) as a light‐harvesting dye. The photocurrent density and power conversion efficiency of the ternary blend solar cells were most improved by loading SiPc with a content of 4.8 wt%. The absorption and surface energy measurements suggested that SiPc is located in the disordered P3HT domains at the RR‐P3HT/PCBM interface rather than in the PCBM and crystal P3HT domains. From the peak wavelength of SiPc absorption, the local concentration of SiPc ([SiPc]Local) was estimated for the RR‐P3HT:PCBM:SiPc ternary blends. Even for amorphous films of regiorandom P3HT (RRa‐P3HT) blended with PCBM and SiPc, [SiPc]Local was higher than the original content, suggesting dye segregation into the RRa‐P3HT/PCBM interface. For RR‐P3HT:PCBM:SiPc blends, [SiPc]Local increased with the increase in the P3HT crystallinity. Such interfacial segregation of dye molecules in ternary blend films can be rationally explained in terms of the surface energy of each component and the crystallization of P3HT being enhanced by annealing. Notably, the solvent annealing effectively segregated dye molecules into the interface without the formation of PCBM clusters.  相似文献   

3.
The use of fullerene as acceptor limits the thermal stability of organic solar cells at high temperatures as their diffusion inside the donor leads to phase separation via Ostwald ripening. Here it is reported that fullerene diffusion is fully suppressed at temperatures up to 140 °C in bulk heterojunctions based on the benzodithiophene‐based polymer (the poly[[4,8‐bis[(2‐ethylhexyl)oxy]‐benzo[1,2‐b:4,5‐b′]dithiophene‐2,6‐diyl][3‐fluoro‐2‐[(2‐ethylhexyl)carbonyl]‐thieno[3,4‐b]thiophenediyl]], (PTB7) in combination with the fullerene derivative [6,6]‐phenyl‐C71‐butyric acid methyl ester (PC70BM). The blend stability is found independently of the presence of diiodooctane (DIO) used to optimize nanostructuration and in contrast to PTB7 blends using the smaller fullerene derivative PC70BM. The unprecedented thermal stability of PTB7:PC70BM layers is addressed to local minima in the mixing enthalpy of the blend forming stable phases that inhibit fullerene diffusion. Importantly, although the nanoscale morphology of DIO processed blends is thermally stable, corresponding devices show strong performance losses under thermal stress. Only by the use of a high temperature annealing step removing residual DIO from the device, remarkably stable high efficiency solar cells with performance losses less than 10% after a continuous annealing at 140 °C over 3 days are obtained. These results pave the way toward high temperature stable polymer solar cells using fullerene acceptors.  相似文献   

4.
We explore the interrelation between density of states, recombination kinetics, and device performance in efficient poly[4,8‐bis‐(2‐ethylhexyloxy)‐benzo[1,2‐b:4,5‐b']dithiophene‐2,6‐diyl‐alt‐4‐(2‐ethylhexyloxy‐1‐one)thieno[3,4‐b]thiophene‐2,6‐diyl]:[6,6]‐phenyl‐C71‐butyric acid methyl ester (PBDTTT‐C:PC71BM) bulk‐heterojunction organic solar cells. We modulate the active‐layer density of states by varying the polymer:fullerene composition over a small range around the ratio that leads to the maximum solar cell efficiency (50–67 wt% PC71BM). Using transient and steady‐state techniques, we find that nongeminate recombination limits the device efficiency and, moreover, that increasing the PC71BM content simultaneously increases the carrier lifetime and drift mobility in contrast to the behavior expected for Langevin recombination. Changes in electronic properties with fullerene content are accompanied by a significant change in the magnitude or energetic separation of the density of localized states. Our comprehensive approach to understanding device performance represents significant progress in understanding what limits these high‐efficiency polymer:fullerene systems.  相似文献   

5.
The impact of trapping on the recombination dynamics in polymer:fullerene blends is clarified using the highly ordered bulk heterojunction (BHJ) blend poly[2,5‐bis(3‐tetradecylthiophen‐2‐yl)thieno[3,2‐b]thiophene] (PBTTT) and [6,6]‐phenyl‐C61‐butyric acid methyl ester (PCBM) at different weight ratios as a model system. The recombination dynamics are determined using both transient charge extraction and steady‐state techniques. The results show that both the decay of photogenerated charge and the light ideality factor at a polymer:fullerene weight ratio of 1:4 are fully consistent with 2D Langevin recombination; in the 1:1 case the recombination is seen to be affected by electron trapping. The theory of 2D Langevin recombination is extended to the case with high trap density in agreement with the observations in the 1:1 case. The recombination capture coefficients are derived both for trap‐assisted and band‐to‐band recombination and it can be seen that anisotropic charge transport reduces the capture coefficients in both cases resulting in a reduced overall recombination.  相似文献   

6.
The origin of open‐circuit voltage (VOC) was studied for polymer solar cells based on a blend of poly(3‐hexylthiophene) (P3HT) and seven fullerene derivatives with different LUMO energy levels and side chains. The temperature dependence of JV characteristics was analyzed by an equivalent circuit model. As a result, VOC increased with the decrease in the saturation current density J0 of the device. Furthermore, J0 was dependent on the activation energy EA for J0, which is related to the HOMO–LUMO energy gap between P3HT and fullerene. Interestingly, the pre‐exponential term J00 for J0 was larger for pristine fullerenes than for substituted fullerene derivatives, suggesting that the electronic coupling between molecules also has substantial impact on VOC. This is probably because the recombination is non‐diffusion‐lmilited reaction depending on electron transfer at the P3HT/fullerene interface. In summary, the origin of VOC is ascribed not only to the relative HOMO–LUMO energy gap but also to the electronic couplings between fullerene/fullerene and polymer/fullerene.  相似文献   

7.
The charge generation and recombination dynamics in polymer/polymer blend solar cells composed of poly(3‐hexylthiophene) (P3HT, electron donor) and poly[2,7‐(9,9‐didodecylfluorene)‐alt‐5,5‐(4′,7′‐bis(2‐thienyl)‐2′,1′,3′‐benzothiadiazole)] (PF12TBT, electron acceptor) are studied by transient absorption measurements. In the unannealed blend film, charge carriers are efficiently generated from polymer excitons, but some of them recombine geminately. In the blend film annealed at 160 °C, on the other hand, the geminate recombination loss is suppressed and hence free carrier generation efficiency increases up to 74%. These findings suggest that P3HT and PF12TBT are intermixed within a few nanometers, resulting in impure PF12TBT and disordered P3HT domains. The geminate recombination is likely due to charge carriers generated on isolated polymer chains in the matrix of the other polymer and at the domain interface with disordered P3HT. The undesired charge loss by geminate recombination is reduced by both the purification of the PF12TBT‐rich domain and crystallization of the P3HT chains. These results show that efficient free carrier generation is not inherent to the polymer/fullerene domain interface, but is possible with polymer/polymer systems composed of crystalline donor and amorphous acceptor polymers, opening up a new potential method for the improvement of solar cell materials.  相似文献   

8.
The morphology, photophysics, and device performance of solar cells based on the low bandgap polymer poly[[2,6′‐4,8‐di(5‐ethylhexylthienyl)benzo[1,2‐b;3,3‐b]dithiophene]3‐fluoro‐2[(2‐ethylhexyl)carbonyl]thieno[3,4‐b]thiophenediyl (PBDTTT‐EFT) (also known as PTB7‐Th) blended with different fullerene acceptors: Phenyl‐C61‐butyric acid methyl ester (PC61BM), phenyl‐C71 ‐butyric acid methyl ester (PC71BM), or indene‐C60 bisadduct (ICBA) are correlated. Compared to PC71 BM‐based cells – which achieve a power conversion efficiency (PCE) of 9.4% – cells using ICBA achieve a higher open‐circuit voltage (VOC) of 1.0 V albeit with a lower PCE of 7.1%. To understand the origin of this lower PCE, the morphology and photophysics have been thoroughly characterized. Hard and soft X‐ray scattering measurements reveal that the PBDTTT‐EFT:ICBA blend has a lower crystallinity, lower domain purity, and smaller domain size compared to the PBDTTT‐EFT:PC71BM blend. Incomplete photoluminescence quenching is also found in the ICBA blend with transient absorption measurements showing faster recombination dynamics at short timescales. Transient photovoltage measurements highlight further differences in recombination at longer timeframes due to the more intermixed morphology of the ICBA blend. Interestingly, a mild thermal treatment improves the performance of PBDTTT‐EFT:ICBA cells which is exploited in the fabrication of a homo PBDTTT‐EFT:ICBA tandem solar cell with PCE of 9.0% and VOC of 1.93 V.  相似文献   

9.
We report the fabrication of high performance organic solar cells by spray‐coating the photoactive layer in air. The photovoltaic blends consist of a blend of carbazole and benzothiadiazole based donor–acceptor copolymers and the fullerene derivative PC70BM. Here, we formulate a number of photovoltaic inks using a range of solvent systems that we show can all be deposited by spray casting. We use a range of techniques to characterize the structure of such films, and show that spray‐cast films have comparable surface roughness to spin‐cast films and that vertical stratification that occurs during film drying reduces the concentration of PCBM towards the underlying PEDOT:PSS interface. We also show that the active layer thickness and the drying kinetics can be tuned through control of the substrate temperature. High power conversion efficiencies of 4.3%, 4.5% and 4.6% were obtained for solar cells made from a blend of PC70BM with the carbazole‐based co‐polymers PCDTBT, P2 and P1. By applying a low temperature anneal after the deposition of the cathode, the efficiency of spray‐cast solar‐cells based on a P2:PC70BM blend is increased to 5.0%. Spray coating holds significant promise as a technique capable of fabricating large‐area, high performance organic solar cells in air.  相似文献   

10.
Ternary blend is proved to be a potential contender for achieving high efficiency in organic photovoltaics, which can apparently strengthen the absorption of active layer so as to better harvest light irradiation. Much of the previous work in ternary polymer solar cells focuses on broadening the absorption spectrum; however, a new insight is brought to study the third component, which in tiny amounts influents the small‐molecule acceptor‐based device performance. Without contributing to complementing the absorption, a minute amount of fullerene derivative, Bis‐PC70BM, can effectively play an impressive role as sensitizer in enhancing the external quantum efficiency of the host binary blend, especially for polymeric donor. Detailed investigations reveal that the minute addition of Bis‐PC70BM can realize morphology modification as well as facilitate electron transfer from polymeric donor to small molecule acceptor via cascade energy level modulation, and therefore lead to an improvement in device efficiency.  相似文献   

11.
To realize efficient photoconversion in organic semiconductors, photogenerated excitons must be dissociated into their constituent electronic charges. In an organic photovoltaic (OPV) cell, this is most often accomplished using an electron donor–acceptor (D–A) interface. Interestingly, recent work on MoOx/C60 Schottky OPVs has demonstrated that excitons in C60 may also undergo efficient bulk‐ionization and generate photocurrent as a result of the large built‐in field created by the MoOx/C60 interface. Here, it is demonstrated that bulk ionization processes also contribute to the short‐circuit current density (JSC) and open‐circuit voltage (VOC) in bulk heterojunction (BHJ) OPVs with fullerene‐rich compositions. Temperature‐dependent measurements of device performance are used to distinguish dissociation by bulk‐ionization from charge transfer at the D–A interface. In optimized fullerene‐rich BHJs based on the D–A pairing of boron subphthalocyanine chloride (SubPc)–C60, bulk‐ionization is found to be responsible for ≈16% of the total photocurrent, and >30% of the photocurrent originating from C60. The presence of bulk‐ionization in C60 also impacts the temperature dependence of VOC, with fullerene‐rich SubPc:C60 BHJ OPVs showing a larger VOC than evenly mixed BHJs. The prevalence of bulk‐ionization processes in efficient, fullerene‐rich BHJs underscores the need to include these effects when engineering device design and morphology in OPVs.  相似文献   

12.
This study correlates the device performance of organic solar cells and the electronic charge transport within polymer/fullerene films, directly to the optical order of the polymer. The optical order was measured by spectroscopic ellipsometry and evaluated by our previously derived model. We were able to determine the in‐depth distribution of higher and lower ordered poly(3‐hexylthiophene) (P3HT) domains within an [6,6]‐phenyl‐C61‐butyric acid methyl ester (PCBM) matrix. The over the film thickness integrated volume fraction of highly ordered P3HT domains could be directly correlated to the corresponding solar cell device performance. We are able to describe various thermally annealing conditions between room‐temperature and 200 °C.  相似文献   

13.
The bulk‐heterojunction nanostructure of non‐crystalline polymer:fullerene blends has the tendency to rapidly coarsen when heated above its glass transition temperature, which represents an important degradation mechanism. We demonstrate that fullerene nucleating agents can be used to thermally arrest the nanostructure of photovoltaic blends that comprise a non‐crystalline thiophene‐quinoxaline copolymer and the widely used fullerene derivative [6,6]‐phenyl‐C61‐butyric acid methyl ester (PCBM). To this end, C60 fullerene is employed to efficiently nucleate PCBM crystallization. Sub‐micrometer‐sized fullerene crystals are formed when as little as 2 wt% C60 with respect to PCBM is added to the blend. These reach an average size of only 200 nanometers upon introduction of more than 8 wt% C60. Solar cells based on C60‐nucleated blends indicate significantly improved thermal stability of the bulk‐heterojunction nanostructure even after annealing at an elevated temperature of 130 °C, which lies above the glass transition temperature of the blend. Moreover, we find that various other compounds, including C70 fullerene, single‐walled carbon nanotubes, and sodium benzoate, as well as a number of commercial nucleating agents—commonly used to clarify isotactic polypropylene—permit to control crystallization of the fullerene phase.  相似文献   

14.
The influence of the polymer/fullerene blend ratio on the morphological properties of organic solar cells is investigated. Spectroscopic ellipsometry is applied as a tool for analyzing fullerene domains and the influence on polymer crystallinity within the film. Furthermore, the measurements are correlated with a percolation limit of as‐cast films at around 40 wt% fullerene content.  相似文献   

15.
The power conversion efficiency of poly(N‐(2‐ethylhexyl)‐3,6‐bis(4‐dodecyloxythiophen‐2‐yl)phthalimide) (PhBTEH)/fullerene bulk heterojunction solar cells improves from 0.43 to 4.1% by using a processing additive. The underlying mechanism for the almost 10‐fold enhancement in solar cell performance is found to be inhibition of fullerene intercalation into the polymer side chains and regulation of the relative crystallization/aggregation rates of the polymer and fullerene. An optimal interconnected two‐phase morphology with 15–20 nm domains is obtained when a processing additive is used compared with 100–300 nm domains without the additive. The results demonstrate that a processing additive provides an effective means of controlling both the fullerene intercalation in polymer/fullerene blends and the domain sizes of their phase‐separated nanoscale morphology.  相似文献   

16.
Ternary organic solar cells (OSCs) are among the best‐performing organic photovoltaic devices to date, largely due to the recent development of nonfullerene acceptors. However, fullerene molecules still play an important role in ternary OSC systems, since, for reasons not well understood, they often improve the device performance, despite their lack of absorption. Here, the photophysics of a prototypical ternary small‐molecule OSC blend composed of the donor DR3, the nonfullerene acceptor ICC6, and the fullerene derivative PC71BM is studied by ultrafast spectroscopy. Surprisingly, it is found that after excitation of PC71BM, ultrafast singlet energy transfer to ICC6 competes efficiently with charge transfer. Subsequently, singlets on ICC6 undergo hole transfer to DR3, resulting in free charge generation. Interestingly, PC71BM improves indirectly the electron mobility of the ternary blend, while electrons reside predominantly in ICC6 domains as indicated by fast spectroscopy. The improved mobility facilitates charge carrier extraction, in turn leading to higher device efficiencies of the ternary compared to binary solar cells. Using the (photo)physical parameters obtained from (transient) spectroscopy and charge transport measurements, the device's current–voltage characteristics are simulated and it is demonstrated that the parameters accurately reproduce the experimentally measured device performance.  相似文献   

17.
Charge selective interlayers are of critical importance in order for solar cells based on low mobility materials, such as polymer‐fullerene blends, to perform well. Commonly used anode interlayers consist of high work function transition metal oxides, with molybdenum trioxide (MoO3) being arguably the most used. Here, it is shown that a thin interlayer of MoO3 causes unintentional bulk doping in solar cells based on polymers and polymer‐fullerene blends. The doping concentrations determined from capacitance–voltage measurements are larger than 1016 cm?3 and are seen to increase closer to the anode, reference devices without MoO3 are undoped. Using time of flight secondary ion mass spectroscopy it is furthermore shown that molybdenum is present on the surface of all films with an interfacial layer of MoO3 beneath the active layer. Doping concentrations of this magnitude are detrimental for device performance, especially for active layers >100 nm.  相似文献   

18.
Tuning the blend composition is an essential step to optimize the power conversion efficiency (PCE) of organic bulk heterojunction (BHJ) solar cells. PCEs from devices of unoptimized donor:acceptor (D:A) weight ratio are generally significantly lower than optimized devices. Here, two high‐performance organic nonfullerene BHJ blends PBDB‐T:ITIC and PBDB‐T:N2200 are adopted to investigate the effect of blend ratio on device performance. It is found that the PCEs of polymer‐polymer (PBDB‐T:N2200) blend are more tolerant to composition changes, relative to polymer‐molecule (PBDB‐T:ITIC) devices. In both systems, short‐circuit current density (Jsc) is tracked closely with PCE, indicating that exciton dissociation and transport strongly influence PCEs. With dilute acceptor concentrations, polymer‐polymer blends maintain high electron mobility relative to the polymer‐molecule blends, which explains the dramatic difference in PCEs between them as a function of D:A blend ratio. In addition, polymer‐polymer solar cells, especially at high D:A blend ratio, are stable (less than 5% relative loss) over 70 d under continuous heating at 80 °C in a glovebox without encapsulation. This work demonstrates that all‐polymer solar cells show advantage in operational lifetime under thermal stress and blend‐ratio resilience, which indicates their high potential for designing of stable and scalable solar cells.  相似文献   

19.
The development of nonfullerene acceptors has brought polymer solar cells into a new era. Maximizing the performance of nonfullerene solar cells needs appropriate polymer donors that match with the acceptors in both electrical and morphological properties. So far, the design rationales for polymer donors are mainly borrowed from fullerene‐based solar cells, which are not necessarily applicable to nonfullerene solar cells. In this work, the influence of side chain length of polymer donors based on a set of random terpolymers PTAZ‐TPD10‐Cn on the device performance of polymer solar cells is investigated with three different acceptor materials, i.e., a fullerene acceptor [70]PCBM, a polymer acceptor N2200, and a fused‐ring molecular acceptor ITIC. Shortening the side chains of polymer donors improves the device performance of [70]PCBM‐based devices, but deteriorates the N2200‐ and ITIC‐based devices. Morphology studies unveil that the miscibility between donor and acceptor in blend films depends on the side chain length of polymer donors. Upon shortening the side chains of the polymer donors, the miscibility between the donor and acceptor increases for the [70]PCBM‐based blends, but decreases for the N2200‐ and ITIC‐based blends. These findings provide new guidelines for the development of polymer donors to match with emerging nonfullerene acceptors.  相似文献   

20.
Efficient ternary polymer solar cells are constructed by incorporating an electron‐deficient chromophore (5Z,5′Z)‐5,5′‐((7,7′‐(4,4,9,9‐tetrakis(4‐hexylphenyl)‐4,9‐dihydro‐s‐indaceno[1,2‐b:5,6‐b′]dithiophene‐2,7‐diyl)bis(6‐fluorobenzo[c][1,2,5]thiadiazole‐7,4‐diyl))bis(methanylylidene))bis(3‐ethyl‐2‐thioxothiazolidin‐4‐one) (IFBR) as an additional component into the bulk‐heterojunction film that consists of a wide‐bandgap conjugated benzodithiophene‐alt‐difluorobenzo[1,2,3]triazole based copolymer and a fullerene acceptor. With respect to the binary blend films, the incorporation of a certain amount of IFBR leads to simultaneously enhanced absorption coefficient, obviously extended absorption band, and improved open‐circuit voltage. Of particular interest is that devices based on ternary blend film exhibit much higher short‐circuit current densities than the binary counterparts, which can be attributed to the extended absorption profiles, enhanced absorption coefficient, favorable film morphology, as well as formation of cascade energy level alignment that is favorable for charge transfer. Further investigation indicates that the ternary blend device exhibits much shorter charge carrier extraction time, obviously reduced trap density and suppressed trap‐assisted recombination, which is favorable for achieving high short‐circuit current. The combination of these beneficial aspects leads to a significantly improved power conversion efficiency of 8.11% for the ternary device, which is much higher than those obtained from the binary counterparts. These findings demonstrate that IFBR can be a promising electron‐accepting material for the construction of ternary blend films toward high‐performance polymer solar cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号