首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
    
The unsatisfactory performance of low‐bandgap mixed tin (Sn)–lead (Pb) halide perovskite subcells has been one of the major obstacles hindering the progress of the power conversion efficiencies (PCEs) of all‐perovskite tandem solar cells. By analyzing dark‐current density and distribution, it is identified that charge recombination at grain boundaries is a key factor limiting the performance of low‐bandgap mixed Sn–Pb halide perovskite subcells. It is further found that bromine (Br) incorporation can effectively passivate grain boundaries and lower the dark current density by two–three orders of magnitude. By optimizing the Br concentration, low‐bandgap (1.272 eV) mixed Sn–Pb halide perovskite solar cells are fabricated with open‐circuit voltage deficits as low as 0.384 V and fill factors as high as 75%. The best‐performing device demonstrates a PCE of >19%. The results suggest an important direction for improving the performance of low‐bandgap mixed Sn–Pb halide perovskite solar cells.  相似文献   

2.
    
Mixed‐dimensional perovskite solar cells combining 3D and 2D perovskites have recently attracted wide interest owing to improved device efficiency and stability. Yet, it remains unclear which method of combining 3D and 2D perovskites works best to obtain a mixed‐dimensional system with the advantages of both types. To address this, different strategies of combining 2D perovskites with a 3D perovskite are investigated, namely surface coating and bulk incorporation. It is found that through surface coating with different aliphatic alkylammonium bulky cations, a Ruddlesden–Popper “quasi‐2D” perovskite phase is formed on the surface of the 3D perovskite that passivates the surface defects and significantly improves the device performance. In contrast, incorporating those bulky cations into the bulk induces the formation of the pure 2D perovskite phase throughout the bulk of the 3D perovskite, which negatively affects the crystallinity and electronic structure of the 3D perovskite framework and reduces the device performance. Using the surface‐coating strategy with n‐butylammonium bromide to fabricate semitransparent perovskite cells and combining with silicon cells in four‐terminal tandem configuration, 27.7% tandem efficiency with interdigitated back contact silicon bottom cells (size‐unmatched) and 26.2% with passivated emitter with rear locally diffused silicon bottom cells is achieved in a 1 cm2 size‐matched tandem.  相似文献   

3.
    
The disorderly distribution of defects in the perovskite or at the grain boundaries, surfaces, and interfaces, which seriously affect carrier transport through the formation of nonradiative recombination centers, hinders the further improvement on the power conversion efficiency (PCE) of perovskite solar cells (PSCs). Several defect passivation strategies have been confirmed as an efficient approach for promoting the performance of PSCs. Herein, recent progress in the defect passivation toward efficient perovskite solar cells are summarized, and a classification of common passivation strategies that elaborate the mechanism according to the location of the defects and the type of passivation agent is presented. Finally, this review offers likely prospects for future trends in the development of passivation strategies.  相似文献   

4.
    
Recently, the stability of organic–inorganic perovskite thin films under thermal, photo, and moisture stresses has become a major concern for further commercialization due to the high volatility of the organic cations in the prototype perovskite composition (CH3NH3PbI3). All inorganic cesium (Cs) based perovskite is an alternative to avoid the release or decomposition of organic cations. Moreover, substituting Pb with Sn in the organic–inorganic lead halide perovskites has been demonstrated to narrow the bandgap to 1.2–1.4 eV for high‐performance perovskite solar cells. In this work, a series of CsPb1?xSnxIBr2 perovskite alloys via one‐step antisolvent method is demonstrated. These perovskite films present tunable bandgaps from 2.04 to 1.64 eV. Consequently, the CsPb0.75Sn0.25IBr2 with homogeneous and densely crystallized morphology shows a remarkable power conversion efficiency of 11.53% and a high Voc of 1.21 V with a much improved phase stability and illumination stability. This work provides a possibility for designing and synthesizing novel inorganic halide perovskites as the next generation of photovoltaic materials.  相似文献   

5.
    
A novel molecular‐ink deposition route based on thiourea and N,N‐dimethylformamide (DMF) that results in a certified solar cell efficiency world record for non‐vacuum deposited CuIn(S,Se)2 (CIS) absorbers and non‐vacuum deposited absorbers with a bandgap of 1.0 eV, is presented. It is found that by substituting the widely employed solvent dimethyl sulfoxide with DMF, the coordination chemistry of InCl3 could be altered, dramatically improving ink stability, enabling up to tenfold increased concentrations, omitting the necessity for elevated ink temperatures, and radically accelerating the deposition process. Furthermore, it is shown that by introducing compositionally graded precursor films, film porosity, compositional gradients, and the surface roughness of the absorbers are effectively reduced and device conversion efficiencies are increased up to 13.8% (13.1% certified, active area). The reduced roughness is also seen as crucial to realize monolithically interconnected CIS‐perovskite tandem devices, where semitransparent MAPbI3 devices are directly deposited on the CIS bottom cell. Confirming the feasibility of this approach, monolithic devices with near perfect voltage addition between subcells of up to 1.40 V are presented.  相似文献   

6.
    
All‐perovskite multijunction photovoltaics, combining a wide‐bandgap (WBG) perovskite top solar cell (EG ≈1.6–1.8 eV) with a low‐bandgap (LBG) perovskite bottom solar cell (EG < 1.3 eV), promise power conversion efficiencies (PCEs) >33%. While the research on WBG perovskite solar cells has advanced rapidly over the past decade, LBG perovskite solar cells lack PCE as well as stability. In this work, vacuum‐assisted growth control (VAGC) of solution‐processed LBG perovskite thin films based on mixed Sn–Pb perovskite compositions is reported. The reported perovskite thin films processed by VAGC exhibit large columnar crystals. Compared to the well‐established processing of LBG perovskites via antisolvent deposition, the VAGC approach results in a significantly enhanced charge‐carrier lifetime. The improved optoelectronic characteristics enable high‐performance LBG perovskite solar cells (1.27 eV) with PCEs up to 18.2% as well as very efficient four‐terminal all‐perovskite tandem solar cells with PCEs up to 23%. Moreover, VAGC leads to promising reproducibility and potential in the fabrication of larger active‐area solar cells up to 1 cm2.  相似文献   

7.
8.
    
Owing to their high efficiency, low‐cost solution‐processability, and tunable bandgap, perovskite solar cells (PSCs) made of hybrid organic‐inorganic perovskite (HOIP) thin films are promising top‐cell candidates for integration with bottom‐cells based on Si or other low‐bandgap solar‐cell materials to boost the power conversion efficiency (PCE) beyond the Shockley‐Quiesser (S‐Q) limit. In this review, recent progress in such tandem solar cells based on the emerging PSCs is summarized and reviewed critically. Notable achievements for different tandem solar cell configurations including mechanically‐stacked, optical coupling, and monolithically‐integrated with PSCs as top‐cells are described in detail. Highly‐efficient semitransparent PSC top‐cells with high transmittance in near‐infrared (NIR) region are critical for tandem solar cells. Different types of transparent electrodes with high transmittance and low sheet‐resistance for PSCs are reviewed, which presents a grand challenge for PSCs. The strategies to obtain wide‐bandgap PSCs with good photo‐stability are discussed. The PCE reduction due to reflection loss, parasitic absorption, electrical loss, and current mismatch are analyzed to provide better understanding of the performance of PSC‐based tandem solar cells.  相似文献   

9.
    
In this contribution, a versatile building block, 3,4‐dicyanothiophene (DCT), which possesses structural simplicity and synthetic accessibility for constructing high‐performance, low‐cost, wide‐bandgap conjugated polymers for use as donors in polymer solar cells (PSCs), is reported. A prototype polymer, PB3TCN‐C66, and its cyano‐free analogue polymer PB3T‐C66, are synthesized to evaluate the potential of using DCT in nonfullerene PSCs. A stronger aggregation property in solution, higher thermal transition temperatures with higher enthalpies, a larger dipole moment, higher relative dielectric constant, and more linear conformation are exhibited by PB3TCN‐C66. Solar cells employing IT‐4F as the electron acceptor offer power conversion efficiencies (PCEs) of 11.2% and 2.3% for PB3TCN‐C66 and PB3T‐C66, respectively. Morphological characterizations reveal that the PB3TCN‐C66:IT‐4F blend exhibits better π–π paracrystallinity, a contracted domain size, and higher phase purity, consistent with its higher molecular interaction parameter, derived from thermodynamic calculations. Moreover, PB3TCN‐C66 offers a higher open‐circuit voltage and reduced energy loss than most state‐of‐the‐art wide‐bandgap polymers, without the need of additional electron‐withdrawing substituents. Two additional polymers derived from DCT also demonstrate promising performance with a higher PCE of 13.4% being achieved. Thus, DCT represents a versatile and promising building block for constructing high‐performance, low‐cost, conjugated polymers for application in PSCs.  相似文献   

10.
11.
    
Gallium arsenide (GaAs) photovoltaic (PV) cells have been widely investigated due to their merits such as thin‐film feasibility, flexibility, and high efficiency. To further increase their performance, a wider bandgap PV structure such as indium gallium phosphide (InGaP) has been integrated in two‐terminal (2T) tandem configuration. However, it increases the overall fabrication cost, complicated tunnel‐junction diode connecting subcells are inevitable, and materials are limited by lattice matching. Here, high‐efficiency and stable wide‐bandgap perovskite PVs having comparable bandgap to InGaP (1.8–1.9 eV) are developed, which can be stable low‐cost add‐on layers to further enhance the performance of GaAs PVs as tandem configurations by showing an efficiency improvement from 21.68% to 24.27% (2T configuration) and 25.19% (4T configuration). This approach is also feasible for thin‐film GaAs PV, essential to reduce its fabrication cost for commercialization, with performance increasing from 21.85% to 24.32% and superior flexibility (1000 times bending) in a tandem configuration. Additionally, potential routes to over 30% stable perovskite/GaAs tandems, comparable to InGaP/GaAs with lower cost, are considered. This work can be an initial step to reach the objective of improving the usability of GaAs PV technology with enhanced performance for applications for which lightness and flexibility are crucial, without a significant additional cost increase.  相似文献   

12.
    
The discovery of unique optoelectronic properties of 3D ABX3 perovskites has produced a great impact on the field of photovoltaics. In the initial years after the breakthrough, interest has focused on a limited number of 3D ABX3 perovskite materials, including the archetypal CH3NH3PbI3 and its counterparts. Undoubtedly, the main limitation of perovskite devices is their low stability due the fast degradation of the perovskite layer; however, the high toxicity of Pb also poses a concern. Herein, the recent increasing number of articles reporting the theoretical modeling, synthesis, optoelectronic characterization, and implementation of alternative perovskite materials in solar devices is summarized. The extensive variety of perovskite derivatives is classified according to the material dimensionality and the crystal structure. The particular strengths and weaknesses for each novel material are discussed, and the device performance and potential stability enhancements are also highlighted.  相似文献   

13.
14.
    
Solution‐processed organic solar cells (OSCs) are promising low‐cost, flexible, portable renewable sources for future energy supply. The state‐of‐the‐art OSCs are typically fabricated from a bulk‐heterojunction (BHJ) active layer containing well‐mixed donor and acceptor molecules in the nanometer regime. However, BHJ solar cells suffer from stability problems caused by the severe morphological changes upon thermal or illumination stress. In comparison, single‐component organic solar cells (SCOSCs) based on a double‐cable conjugated polymer with a covalently stabilized microstructure is suggested to be a key strategy for superior long‐term stability. Here, the thermal‐ and photostability of SCOSCs based on a model double‐cable polymer is systematically investigated. It is encouraging to find that under 90 °C & 1 sun illumination, the performance of SCOSCs remains substantially stable. Transport measurements show that charge generation and recombination (lifetime and recombination order) hardly change during the aging process. Particularly, the SCOSCs exhibit ultrahigh long‐term thermal stability with 100% PCE remaining after heating at temperature up to 160 °C for over 400 h, indicating an excellent candidate for extremely rugged applications.  相似文献   

15.
    
Metal halide perovskite solar cells (PSCs) have emerged as promising candidates for photovoltaic technology with their power conversion efficiencies over 23%. For prototypical organic–inorganic metal halide perovskites, their intrinsic instability poses significant challenges to the commercialization of PSCs. Recently, the scientific community has done tremendous work in composition engineering to develop more robust light‐absorbing layers, including mixed‐ion hybrid perovskites, low‐dimensional hybrid perovskites, and all‐inorganic perovskites. This review provides an overview of the impact of these perovskites on the efficiency and long‐term stability of PSCs.  相似文献   

16.
    
To solve critical issues related to device stability and performance of perovskite solar cells (PSCs), FA0.026MA0.974PbI3?yCly‐Cu:NiO (formamidinium methylammonium (FAMA)‐perovskite‐Cu:NiO) and Al2O3/Cu:NiO composites are developed and utilized for fabrication of highly stable and efficient PSCs through fully‐ambient‐air processes. The FAMA‐perovskite‐Cu:NiO composite crystals prepared without using any antisolvents not only improve the perovskite film quality with large‐size crystals and less grain boundaries but also tailor optical and electronic properties and suppress charge recombination with reduction of trap density. A champion device based on the composites as light absorber and Al2O3/Cu:NiO interfacial layer between electron transport layer and active layer yields power conversion efficiency (PCE) of 20.67% with VOC of 1.047 V, JSC of 24.51 mA cm?2, and fill factor of 80.54%. More importantly, such composite‐based PSCs without encapsulation show significant enhancement in long‐term air‐stability, thermal‐ and photostability with retaining 97% of PCE over 240 d under ambient conditions (25–30 °C, 45–55% humidity).  相似文献   

17.
    
Photo-induced halide segregation in wide-bandgap (WBG) perovskite leads to poor stability and limits its application in high-efficiency tandem solar cells. Here, a simple solution strategy to achieve photostable WBG perovskite solar cells (PSCs) with bandgap of ≈1.67 eV by ionic coupling potassium sorbate with defects at the buried perovskite interface is reported. Moreover, the ionic coupled potassium sorbate (ICPS) enables to control the formation of N-methyl formamidinium ions that can selectively passivate the perovskite defects at grain boundaries. As a result, the photo-induced halide segregation in the target perovskite films is frozen under intense light. The target single-junction WBG PSC achieves a record efficiency of 22.00% with an open-circuit voltage (VOC) of 1.272 V and photostability of less than 2% decay over 2000 h of operation. Perovskite/Silicon tandem solar cells are also fabricated that achieve an efficiency of 30.72% (certified 30.09% @1.087 cm2), which is the highest efficiency reported to date with a tunneling oxide passivating contact (TOPCon) c-Si substrate. The encapsulated tandem device can maintain 97% of its initial efficiency after 1000 h of operation.  相似文献   

18.
    
Developing efficient narrow bandgap Pb–Sn hybrid perovskite solar cells with high Sn‐content is crucial for perovskite‐based tandem devices. Film properties such as crystallinity, morphology, surface roughness, and homogeneity dictate photovoltaic performance. However, compared to Pb‐based analogs, controlling the formation of Sn‐containing perovskite films is much more challenging. A deeper understanding of the growth mechanisms in Pb–Sn hybrid perovskites is needed to improve power conversion efficiencies. Here, in situ optical spectroscopy is performed during sequential deposition of Pb–Sn hybrid perovskite films and combined with ex situ characterization techniques to reveal the temporal evolution of crystallization in Pb–Sn hybrid perovskite films. Using a two‐step deposition method, homogeneous crystallization of mixed Pb–Sn perovskites can be achieved. Solar cells based on the narrow bandgap (1.23 eV) FA0.66MA0.34Pb0.5Sn0.5I3 perovskite absorber exhibit the highest efficiency among mixed Pb–Sn perovskites and feature a relatively low dark carrier density compared to Sn‐rich devices. By passivating defect sites on the perovskite surface, the device achieves a power conversion efficiency of 16.1%, which is the highest efficiency reported for sequential solution‐processed narrow bandgap perovskite solar cells with 50% Sn‐content.  相似文献   

19.
    
A tandem organic solar cell (OSC) is a valid structure to widen the photon response range and suppress the transmission loss and thermalization loss. In the past few years, the development of low‐bandgap materials with broad absorption in long‐wavelength region for back subcells has attracted considerable attention. However, wide‐bandgap materials for front cells that have both high short‐circuit current density (JSC) and open‐circuit voltage (VOC) are scarce. In this work, a new fluorine‐substituted wide‐bandgap small molecule nonfullerene acceptor TfIF‐4FIC is reported, which has an optical bandgap of 1.61 eV. When PBDB‐T‐2F is selected as the donor, the device offers an extremely high VOC of 0.98 V, a high JSC of 17.6 mA cm?2, and a power conversion efficiency of 13.1%. This is the best performing acceptor with such a wide bandgap. More importantly, the energy loss in this combination is 0.63 eV. These properties ensure that PBDB‐T‐2F:TfIF‐4FIC is an ideal candidate for the fabrication of tandem OSCs. When PBDB‐T‐2F:TfIF‐4FIC and PTB7‐Th:PCDTBT:IEICO‐4F are used as the front cell and the back cell to construct tandem solar cells, a PCE of 15% is obtained, which is one of best results reported to date in the field of organic solar cells.  相似文献   

20.
    
Layered low‐dimensional perovskite structures employing bulky organic ammonium cations have shown significant improvement on stability but poorer performance generally compared to their 3D counterparts. Here, a mixed passivation (MP) treatment is reported that uses a mixture of bulky organic ammonium iodide (iso‐butylammonium iodide, iBAI) and formammidinium iodide (FAI), enhancing both power conversion efficiency and stability. Through a combination of inactivation of the interfacial trap sites, characterized by photoluminescence measurement, and formation of an interfacial energetic barrier by which ionic transport is reduced, demonstrated by Kelvin probe force microscopy, MP treatment of the perovskite/hole transport layer interface significantly suppresses photocurrent hysteresis. Using this MP treatment, the champion mixed‐halide perovskite cell achieves a reverse scan and stabilized power conversion efficiency of 21.7%. Without encapsulation, the devices show excellent moisture stability, sustaining over 87% of the original performance after 38 d storage in ambient environment under 75 ± 20% relative humidity. This work shows that FAI/ i BAI, is a new and promising material combination for passivating perovskite/selective‐contact interfaces.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号