首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this work, different from the commonly explored strategy of incorporating a smaller cation, MA+ and Cs+ into FAPbI3 lattice to improve efficiency and stability, it is revealed that the introduction of phenylethylammonium iodide (PEAI) into FAPbI3 perovksite to form mixed cation FAxPEA1–xPbI3 can effectively enhance both phase and ambient stability of FAPbI3 as well as the resulting performance of the derived devices. From our experimental and theoretical calculation results, it is proposed that the larger PEA cation is capable of assembling on both the lattice surface and grain boundaries to form quais‐3D perovskite structures. The surrounding of PEA+ ions at the crystal grain boundaries not only can serve as molecular locks to tighten FAPbI3 domains but also passivate the surface defects to improve both phase and moisture stablity. Consequently, a high‐performance (PCE:17.7%) and ambient stable FAPbI3 solar cell could be developed.  相似文献   

2.
Although all‐inorganic perovskite solar cells (PSCs) demonstrate high thermal stability, cesium‐lead halide perovskites with high iodine content suffer from poor stability of the black phase (α‐phase). In this study, it is demonstrated that incorporating InCl3 into the host perovskite lattice helps to inhibit the formation of yellow phase (δ‐phase) perovskite and thereby enhances the long‐term ambient stability. The enhanced stability is achieved by a strategy for the structural reconstruction of CsPbI2Br perovskite by means of In3+ and Cl? codoping, which gives rise to a significant improvement in the overall spatial symmetry with a closely packed atom arrangement due to the crystal structure transformation from orthorhombic (Pnma) to cubic (Pm‐3m). In addition, a novel thermal radiation heating method that further improves the uniformity of the perovskite thin films is presented. This approach enables the construction of all‐inorganic InCl3:CsPbI2Br PSCs with a champion power conversion efficiency of 13.74% for a small‐area device (0.09 cm2) and 11.4% for a large‐area device (1.00 cm2).  相似文献   

3.
The stability of single‐crystalline/monocrystalline‐like perovskite film is expected to be better than its microcrystalline counterparts. In the present work, highly orientated perovskite thin films (CH3NH3PbI3–xClx) are prepared by means of aquointermediates assisted solution process. It displays super‐duper preferred‐orientation along <110> direction that is close to the single crystal, and its diffraction intensity ratio of (110)/(310) is nearly two orders of magnitude higher in contrast to the films that prepared by traditional way. Owing to its superior performances, e.g., highly crystallized quality, stress‐free inside films, longer electron lifetime, faster temporal response time, etc., the highly orientated perovskite‐based solar cells accordingly allow realizing high efficiency while improving its thermal stability.  相似文献   

4.
Interfacial engineering, grain boundary, and surface passivation in organic–inorganic hybrid perovskite solar cells (HyPSCs) are effective in achieving high performance and enhanced durability. Organic additives and inorganic doping are generally used to chemically modify the surface contacting charge transport layers, and/or grain boundaries so as to reduce the defect density. Here, a simple but tricky one‐step method to dope organic–inorganic hybrid perovskite with Ge for the first time is reported. Unlike Ge doping to all‐inorganic perovskites, application of GeI2 in organic–inorganic perovskite precursors is challenging due to the extremely poor solubility of GeI2 in hybrid perovskite ink, leading to failure in the formation of uniform films. However, it is found that addition of methylammonium chloride (MACl) into the precursor remarkably increases the solubility of GeI2. This MACl‐assisted Ge doping of hybrid perovskites produces high‐quality crystalline film with its surface passivated with nonvolatile GeI2 (GeO2) and the volatile MACl additive also improves the uniformity of GeO2 distribution in the perovskite films. The resulting Ge‐doped mixed cation and mixed halide perovskite films with composition FA0.83MA0.17Ge0.03Pb0.97(I0.9Br0.1)3 show superior photoluminescence lifetime, power conversion efficiency above 22%, and greater stability toward illumination and humidity, outperforming photovoltaic properties of HyPSCs prepared without the Ge doping.  相似文献   

5.
Organic‐inorganic halide perovskite materials have become a shining star in the photovoltaic field due to their unique properties, such as high absorption coefficient, optimal bandgap, and high defect tolerance, which also lead to the breathtaking increase in power conversion efficiency from 3.8% to over 22% in just seven years. Although the highest efficiency was obtained from the TiO2 mesoporous structure, there are increasing studies focusing on the planar structure device due to its processibility for large‐scale production. In particular, the planar p‐i‐n structure has attracted increasing attention on account of its tremendous advantages in, among other things, eliminating hysteresis alongside a competitive certified efficiency of over 20%. Crucial for the device performance enhancement has been the interface engineering for the past few years, especially for such planar p‐i‐n devices. The interface engineering aims to optimize device properties, such as charge transfer, defect passivation, band alignment, etc. Herein, recent progress on the interface engineering of planar p‐i‐n structure devices is reviewed. This review is mainly focused on the interface design between each layer in p‐i‐n structure devices, as well as grain boundaries, which are the interfaces between polycrystalline perovskite domains. Promising research directions are also suggested for further improvements.  相似文献   

6.
7.
8.
Inorganic lead halide perovskites have attracted attention due to their tolerance to higher processing temperature and higher bandgap suitable for tandem solar cell application. Not only do they improve cell stability and efficiency, they also reveal many interesting and un‐anticipated material qualities. This work reports a simple cation exchange growth (CEG) method for fabricating inorganic high‐quality cesium lead iodide (CsPbI3) by adding methylammonium iodide (MAI) additive in the precursor. X‐ray diffraction results reveal a multi‐stage film formation process whereby i) MAPbI3 perovskite first formed that acts as a perovskite template for ii) subsequent ion exchange whereby the MA+ ions in the MAPbI3 are replaced by Cs+ (as temperature ramps up) and iii) form g‐phase perovskite CsPbI3. Optical microscopy, photoluminescence, and electrical characterizations reveal that the CEG process produces high‐quality film with better absorption, uniform and dense film with better interface, lower defects, and better stability. Using the CEG approach, the power conversion efficiency of the best CsPbI3 solar cell is significantly increased up to 14.1% for the device fabricated using 1.0 m MAI additive. The outcome is beneficial for further improvement of inorganic perovskite solar cells and their application in perovskite‐silicon tandem devices.  相似文献   

9.
10.
Organometal trihalide perovskites have recently emerged as promising materials for low‐cost, high‐efficiency solar cells. In less than five years, the efficiency of perovskite solar cells (PSC) has been updated rapidly as a result of new strategies adopted in their fabrication process, including device structure, interfacial engineering, chemical compositional tuning, and crystallization kinetics control. To date, the best PSC efficiency has reached 20.1%, which is close to that of single crystal silicon solar cells. However, the stability of PSC devices is still unsatisfactory and is the main bottleneck impeding their commercialization. Here, we summarize recent studies on the degradation mechanisms of organometal trihalide perovskites in PSC devices, and the strategies for stability improvement.  相似文献   

11.
The notoriously poor stability of perovskite solar cells is a crucial issue restricting commercial applications. Here, a fluorinated perylenediimide (F‐PDI) is first introduced into perovskite film to enhance the device's photovoltaic performance, as well as thermal and moisture stability simultaneously. The conductive F‐PDI molecules filling at grain boundaries (GBs) and surface of perovskite film can passivate defects and promote charge transport through GBs due to the chelation between carbonyl of F‐PDI and noncoordinating lead. Furthermore, an effective multiple hydrophobic structure is formed to protect perovskite film from moisture erosion. As a result, the F‐PDI‐incorporated devices based on MAPbI3 and Cs0.05 (FA0.83MA0.17)0.95 Pb (Br0.17I0.83)3 absorber achieve champion efficiencies of 18.28% and 19.26%, respectively. Over 80% of the initial efficiency is maintained after exposure in air for 30 days with a relative humidity (RH) of 50%. In addition, the strong hydrogen bonding of F···H‐N can immobilize methylamine ion (MA+) and thus enhances the thermal stability of device, remaining nearly 70% of the initial value after thermal treatment (100 °C) for 24 h at 50% RH condition.  相似文献   

12.
All‐inorganic perovskite semiconductors have recently drawn increasing attention owing to their outstanding thermal stability. Although all‐inorganic perovskite solar cells (PSCs) have achieved significant progress in recent years, they still fall behind their prototype organic–inorganic counterparts owing to severe energy losses. Therefore, there is considerable interest in further improving the performance of all‐inorganic PSCs by synergic optimization of perovskite films and device interfaces. This review article provides an overview of recent progress in inorganic PSCs in terms of lead‐based and lead‐free composition. The physical properties of all‐inorganic perovskite semiconductors as well as the hole/electron transporting materials are discussed to unveil the important role of composition engineering and interface modification. Finally, a discussion of the prospects and challenges for all‐inorganic PSCs in the near future is presented.  相似文献   

13.
Improving device lifetime is one of the critical challenges for the practical use of metal halide perovskite solar cells (PSCs), wherein a reliable encapsulation is indispensable. Herein, based on an in‐depth understanding of the degradation mechanism for the PSCs, a solvent‐free and low‐temperature melting encapsulation technique, by employing low‐cost paraffin as the encapsulant that is compatible with perovskite absorbers, is demonstrated. The encapsulation strategy enables the full encapsulating operations to be undertaken under an ambient environment. It is found that the strategy not only removes residual oxygen and moisture to prevent the perovskite from phase segregation, but also suppresses the species volatilization to impede absorber decomposition, enabling a PSC devices with good thermal and moisture stability. As a result, the as‐encapsulated PSCs achieve a 1000 h operational lifetime for the encapsulated device at continuous maximum power point output under an ambient environment. This work paves the way for scalable and robust encapsulation strategy feasible to hybrid perovskite optoelectronics in an economic manner.  相似文献   

14.
The stability of perovskite solar cells (PSCs) has been identified to be the bottleneck toward their industrialization. With the aim of tackling this challenge, a 1D PbI2‐bipyridine (BPy)(II) perovskite is fabricated, which is shown to be capable of in situ assembly of a 1D@3D perovskite that is promoted by a PbI2‐dimethyl sulfoxide complex with a skeletal linear chain structure. The as‐prepared 1D@3D perovskite is observed to demonstrate extremely high stability under external large electric fields in humid environments by means of an in situ characterization technique. This stability is associated with its well lattice‐matching heterojunction structure between 1D and 3D heterojunction domains. Importantly, ion migration is alleviated through blocking of the ion‐migration channels. Accordingly, the 1D@3D hybrid PSC shows a power conversion efficiency of 21.18% maintaining remarkably high long‐term stability in the presence of water, illumination, and external electric fields. This rational design and microstructure study of 1D@3D perovskites provides a new paradigm that may enable higher efficiency and stability of PSCs.  相似文献   

15.
16.
Stability has become the main obstacle for the commercialization of perovskite solar cells (PSCs) despite the impressive power conversion efficiency (PCE). Poor crystallization and ion migration of perovskite are the major origins of its degradation under working condition. Here, high‐performance PSCs incorporated with pyridine‐2‐carboxylic lead salt (PbPyA2) are fabricated. The pyridine and carboxyl groups on PbPyA2 can not only control crystallization but also passivate grain boundaries (GBs), which result in the high‐quality perovskite film with larger grains and fewer defects. In addition, the strong interaction among the hydrophobic PbPyA2 molecules and perovskite GBs acts as barriers to ion migration and component volatilization when exposed to external stresses. Consequently, superior optoelectronic perovskite films with improved thermal and moisture stability are obtained. The resulting device shows a champion efficiency of 19.96% with negligible hysteresis. Furthermore, thermal (90 °C) and moisture (RH 40–60%) stability are improved threefold, maintaining 80% of initial efficiency after aging for 480 h. More importantly, the doped device exhibits extraordinary improvement of operational stability and remains 93% of initial efficiency under maximum power point (MPP) tracking for 540 h.  相似文献   

17.
Adding a small amount of CsI into mixed cation‐halide perovskite film via a one‐step method has been demonstrated as an excellent strategy for high‐performance perovskite solar cells (PSCs). However, the one‐step method generally relies on an antisolvent washing process, which is hard to control and not suitable for fabricating large‐area devices. Here, CsF is employed and Cs is incorporated into perovskite film via a two‐step method. It is revealed that CsF can effectively diffuse into the PbI2 seed film, and drastically enhances perovskite crystallization, leading to high‐quality Cs‐doped perovskite film with a very long photoluminescence carrier lifetime (1413 ns), remarkable light stability, thermal stability, and humidity stability. The fabricated PSCs show power conversion efficiency (PCE) of over 21%, and they are highly thermally stable: in the aging test at 60 °C for 300 h, 96% of the original PCE remains. The CsF incorporation process provides a new avenue for stable high‐performance PSCs.  相似文献   

18.
Low‐temperature‐processed perovskite solar cells (PSCs), which can be fabricated on rigid or flexible substrates, are attracting increasing attention because they have a wide range of potential applications. In this study, the stability of reduced graphene oxide and the ability of a poly(triarylamine) underlayer to improve the quality of overlying perovskite films to construct hole‐transport bilayer by means of a low‐temperature method are taken advantage of. The bilayer is used in both flexible and rigid inverted planar PSCs with the following configuration: substrate/indium tin oxide/reduced graphene oxide/polytriarylamine/CH3NH3PbI3/PCBM/bathocuproine/Ag (PCBM = [6,6]‐phenyl‐C61‐butyric acid methyl ester). The flexible and rigid PSCs show power conversion efficiencies of 15.7 and 17.2%, respectively, for the aperture area of 1.02 cm2. Moreover, the PSC based the bilayer shows outstanding light‐soaking stability, retaining ≈90% of its original efficiency after continuous illumination for 500 h at 100 mW cm?2.  相似文献   

19.
Perovskite solar cells (PSCs) have reached a certified 25.2% efficiency in 2019 due to their high absorption coefficient, high carrier mobility, long diffusion length, and tunable direct bandgap. However, due to the nature of solution processing and rapid crystal growth of perovskite thin films, a variety of defects can form as a result of the precursor compositions and processing conditions. The use of additives can affect perovskite crystallization and film formation, defect passivation in the bulk and/or at the surface, as well as influence the interface tuning of structure and energetics. Here, recent progress in additive engineering during perovskite film formation is discussed according to the following common categories: Lewis acid (e.g., metal cations, fullerene derivatives), Lewis base based on the donor type (e.g., O‐donor, S‐donor, and N‐donor), ammonium salts, low‐dimensional perovskites, and ionic liquid. Various additive‐assisted strategies for interface optimization are then summarized; additives include modifiers to improve electron‐ and hole‐transport layers as well as those to modify perovskite surface properties. Finally, an outlook is provided on research trends with respect to additive engineering in PSC development.  相似文献   

20.
The hole transporting layer (HTL) plays an important role in realizing efficient and stable perovskite solar cells (PSCs). In spite of intensive research efforts toward the development of HTL materials, low‐cost, dopant‐free hole transporting materials that lead to efficient and stable PSCs remain elusive. Herein, a simple polycyclic heteroaromatic hydrocarbon‐based small molecule, 2,5,9,12‐tetra(tert‐butyl)diacenaphtho[1,2‐b:1′,2′‐d]thiophenen, as an efficient HTL material in PSCs is presented. This molecule is easy to synthesize and inexpensive. It is hydrophobic and exhibits excellent film‐forming properties on perovskites. It has unusually high hole mobility and a desirable highest occupied molecular orbital energy level, making it an ideal HTL material. PSCs fabricated using both the n‐i‐p planar and mesoscopic architectures with this compound as the HTL show efficiencies as high as 15.59% and 18.17%, respectively, with minimal hysteresis and high long term stability under ambient conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号