首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sodium‐based energy storage technologies are potential candidates for large‐scale grid applications owing to the earth abundance and low cost of sodium resources. Transition metal phosphides, e.g. MoP, are promising anode materials for sodium‐ion storage, while their detailed reaction mechanisms remain largely unexplored. Herein, the sodium‐ion storage mechanism of hexagonal MoP is systematically investigated through experimental characterizations, density functional theory calculations, and kinetics analysis. Briefly, it is found that the naturally covered surface amorphous molybdenum oxides layers on the MoP grains undergo a faradaic redox reaction during sodiation and desodiation, while the inner crystalline MoP remains unchanged. Remarkably, the MoP anode exhibits a pseudocapacitive‐dominated behavior, enabling the high‐rate sodium storage performance. By coupling the pseudocapacitive anode with a high‐rate‐battery‐type Na3V2O2(PO4)2F@rGO cathode, a novel sodium‐ion full cell delivers a high energy density of 157 Wh kg?1 at 97 W kg?1 and even 52 Wh kg?1 at 9316 W kg?1. These findings present the deep understanding of the sodium‐ion storage mechanism in hexagonal MoP and offer a potential route for the design of high‐rate sodium‐ion storage materials and devices.  相似文献   

2.
3.
The reliability and durability of lithium‐ion capacitors (LICs) are severely hindered by the kinetic imbalance between capacitive and Faradaic electrodes. Efficient charge storage in LICs is still a huge challenge, particularly for thick electrodes with high mass loading, fast charge delivery, and harsh working conditions. Here, a unique thermally durable, stable LIC with high energy density from all‐inorganic hydroxyapatite nanowire (HAP NW)‐enabled electrodes and separators is reported. Namely, the LIC device is designed and constructed with the electron/ion dual highly conductive and fire‐resistant composite Li4Ti5O12‐based anode and activated carbon‐based cathode, together with a thermal‐tolerant HAP NW separator. Despite the thick‐electrode configuration, the as‐fabricated all HAP NW‐enabled LIC exhibits much enhanced electrochemical kinetics and performance, especially at high current rates and temperatures. Long cycling lifetime and state‐of‐the‐art areal energy density (1.58 mWh cm?2) at a high mass loading of 30 mg cm?2 are achieved. Benefiting from the excellent fire resistance of HAP NWs, such an unusual LIC exhibits high thermal durability and can work over a wide range of temperatures from room temperature to 150 °C. Taking full advantage of synergistic configuration design, this work sets the stage for designing advanced LICs beyond the research of active materials.  相似文献   

4.
An industry‐relevant method for pre‐lithiation of lithium‐ion capacitors to balance the first charge irreversibility is demonstrated, which addresses the prime bottleneck for their market integration. Based on a composite positive electrode that integrates pyrene monomers and an insoluble lithiated base, Li3PO4, a “cascade‐type” process involving two consecutive irreversible reactions is proposed: i) oxidative electropolymerization of the pyrene moieties releases electrons and protons; ii) protons are captured by Li3PO4 and exchanged for a stoichiometric amount of Li+ into the electrolyte. (1H, 19F, and 31P) NMR spectroscopy, operando X‐ray diffraction, and Raman spectroscopy support this mechanism. By decoupling the irreversible source of lithium ions from electrons, the cascade‐type pre‐lithiation allows the simultaneous enhancement of the capacity of the positive electrode, thanks to p‐doping of the resulting polymer. Remarkably, the proton scavenging properties of Li3PO4 also boost the polymerization process, which enables a 16% increase in capacity without detrimental effect on power properties and cyclability. Full cells integrating a cheap carbon black based negative electrode, show much‐improved capacity of 17 mAh g‐1electrodes (44 F g‐1electrodes, 3–4.4 V) and excellent stability over 2200 cycles at 1 A g‐1. Thanks to its versatile chemistry and flexibility this approach in principle can be applied to any kind of ion‐battery.  相似文献   

5.
6.
SnS2 nanoplatelet electrodes can offer an exceptionally high pseudocapacitance in an organic Na+ ion electrolyte system, but their underlying mechanisms are still largely unexplored, hindering the practical applications of pseudocapacitive SnS2 anodes in Na‐ion batteries (SIBs) and Na hybrid capacitors (SHCs). Herein, SnS2 nanoplatelets are grown directly on SnO2/C composites to synthesize SnS2/graphene‐carbon nanotube aerogel (SnS2/GCA) by pressurized sulfidation where the original morphology of carbon framework is preserved. The composite electrode possessing a large surface area delivers a remarkable specific capacity of 600.3 mA h g?1 at 0.2 A g?1 and 304.8 mA h g?1 at an ultrahigh current density of 10 A g?1 in SIBs. SHCs comprising a SnS2/GCA composite anode and an activated carbon cathode present exceptional energy densities of 108.3 and 26.9 W h kg?1 at power densities of 130 and 6053 W kg?1, respectively. The in situ transmission electron microscopy and the density functional theory calculations reveal that the excellent pseudocapacitance originates from the combination of Na adsorption on the surface/Sn edge of SnS2 nanoplatelets and ultrafast Na+ ion intercalation into the SnS2 layers.  相似文献   

7.
8.
Dielectric capacitors are receiving a great deal of attention for advanced pulsed power owing to their high power density and quick charge/discharge rate. However, the energy density is limited and the efficiency and the thermal stability are also not ideal, which has been a longstanding obstacle to developing desirable dielectric materials. These concerns have are addressed herein by fabricating nanodomain‐engineered BiFeO3‐BaTiO3‐NaNbO3 bulk ferroelectrics, integrating a high‐spontaneous‐polarization gene, wide band gaps, and a heterogeneous nanodomain structure, generating record‐excellent comprehensive performance of giant energy‐storage density Wrec ≈8.12 J cm?3, high efficiency η ≈90% and excellent thermal stability (±10%, ?50 to 250 °C) and ultrafast discharge rate (t0.9 < 100 ns). Significantly enhanced dielectric breakdown strength of BiFeO3‐based solid solutions is mainly attributed to the substitution of NaNbO3, which provides an increased band gap, refined grain size, and increased resistivity. The formation of nanoscale domains as evidenced by piezoresponse force microscopy and transmission electron microscopy enables nearly hysteresis‐free polarization‐field response and temperature‐insensitive dielectric response. In comparison with antiferroelectric capacitors, the current work provides a new solution to successfully design next‐generation pulsed power capacitors by fully utilizing relaxor ferroelectrics in energy‐storage efficiency and thermal stability.  相似文献   

9.
High energy density at high power density is still a challenge for the current Li‐ion capacitors (LICs) due to the mismatch of charge‐storage capacity and electrode kinetics between capacitor‐type cathode and battery‐type anode. In this work, B and N dual‐doped 3D porous carbon nanofibers are prepared through a facile method as both capacitor‐type cathode and battery‐type anode for LICs. The B and N dual doping has profound effect in tuning the porosity, functional groups, and electrical conductivity for the porous carbon nanofibers. With rational design, the developed B and N dual‐doped carbon nanofibers (BNC) exhibit greatly improved electrochemical performance as both cathode and anode for LICs, which greatly alleviates the mismatch between the two electrodes. For the first time, a 4.5 V “dual carbon” BNC//BNC LIC device is constructed and demonstrated, exhibiting outstanding energy density and power capability compared to previously reported LICs with other configurations. In specific, the present BNC//BNC LIC device can deliver a large energy density of 220 W h kg?1 and a high power density of 22.5 kW kg?1 (at 104 W h kg?1) with reasonably good cycling stability (≈81% retention after 5000 cycles).  相似文献   

10.
11.
12.
13.
Potassium‐ion hybrid capacitors (PIHCs), elaborately integrate the advantages of high output power as well as long lifespan of supercapacitors and the high energy density of batteries, and exhibit great possibilities for the future generations of energy storage devices. The critical next step for future implementation lies in exploring a high‐rate battery‐type anode with an ultra‐stable structure to match the capacitor‐type cathode. Herein, a “dual‐carbon” is constructed, in which a three‐dimensional nitrogen‐doped microporous carbon polyhedron (NMCP) derived from metal‐organic frameworks is tightly wrapped by two‐dimensional reduced graphene oxide (NMCP@rGO). Benefiting from the synergistic effect of the inner NMCP and outer rGO, the NMCP@rGO exhibits a superior K‐ion storage capability with a high reversible capacity of 386 mAh g?1 at 0.05 A g?1 and ultra‐long cycle stability with a capacity of 151.4 mAh g?1 after 6000 cycles at 5.0 A g?1. As expected, the as‐assembled PIHCs with a working voltage as high as 4.2 V present a high energy/power density (63.6 Wh kg?1 at 19 091 W kg?1) and excellent capacity retention of 84.7% after 12 000 cycles. This rational construction of advanced PIHCs with excellent performance opens a new avenue for further application and development.  相似文献   

14.
Less‐defective graphene oxide sheets with a small average size of 0.7 µm are electrochemically reduced to form a hydrogel film with highly oriented porous structure. It is applied as the electrode of organic electrochemical capacitor (OEC) after solvent change with organic electrolyte and deep reduction in this organic medium. At 120 Hz, the typical OEC exhibits a high areal specific energy density of 472 µF V2 cm?2 with a wide workable voltage window of 2.5 V, a phase angle of ?80.5°, a resistor‐capacitor time constant (τRC) of 0.219 ms, and an excellent electrochemical stability. Thus, it is promising to replace aluminum electrolytic capacitors for AC line filtering. Furthermore, two identical OECs connected in series keep the performance of single device, making them practically applicable in electronics.  相似文献   

15.
16.
Output voltage and self‐discharge rate are two important performance indices for supercapacitors, which have long been overlooked, though these play a very significant role in their practical application. Here, a zinc anode is used to construct a zinc ion hybrid capacitor. Expanded operating voltage of the hybrid capacitor is obtained with novel electrolytes. In addition, significantly improved anti‐self‐discharge ability is achieved. The phosphorene‐based zinc ion capacitor exploiting a “water in salt” electrolyte with a working potential can reach 2.2 V, delivering 214.3 F g?1 after 5000 cycles. The operating voltage is further extended to 2.5 V through the use of an organic solvent as the electrolyte; the solvent is prepared by adding 0.2 m ZnCl2 into the tetraethylammonium tetrafluoroborate in propylene carbonate (Et4NBF4/PC) solvent, and it exhibits 105.9 F g?1 even after 9500 cycles. More importantly, the phosphorene‐based capacitors possess excellent anti‐self‐discharge performance. The capacitors retain 76.16% of capacitance after resting for 300 h. The practical application of the zinc ion capacitor is demonstrated through a flexible paper‐based printed microcapacitor. It is believed that the developed zinc ion capacitor can effectively resolve the severe self‐discharge problem of supercapacitors. Moreover, high‐voltage zinc ion capacitors provide more opportunities for the application of supercapacitors.  相似文献   

17.
Achieving high‐performance Na‐ion capacitors (NICs) has the particular challenge of matching both capacity and kinetics between the anode and cathode. Here a high‐power NIC full device constructed from 2D metal–organic framework (MOFs) array is reported as the reactive template. The MOF array is converted to N‐doped mesoporous carbon nanosheets (mp‐CNSs), which are then uniformly encapsulated with VO2 and Na3V2(PO4)3 (NVP) nanoparticles as the electroactive materials. By this method, the high‐power performance of the battery materials is enabled to be enhanced significantly. It is discovered that such hybrid NVP@mp‐CNSs array can render ultrahigh rate capability (up to 200 C, equivalent to discharge within 18 s) and superior cycle performance, which outperforms all NVP‐based Na‐ion battery cathodes reported so far. A quasi‐solid‐state flexible NIC based on the NVP@mp‐CNSs cathode and the VO2@mp‐CNSs anode is further assembled. This hybrid NIC device delivers both high energy density and power density as well as a good cycle stability (78% retention after 2000 cycles at 1 A g?1). The results demonstrate the powerfulness of MOF arrays as the reactor for fabricating electrode materials.  相似文献   

18.
Na‐ion capacitors have attracted extensive interest due to the combination of the merits of high energy density of batteries and high power density as well as long cycle life of capacitors. Here, a novel Na‐ion capacitor, utilizing TiO2@CNT@C nanorods as an intercalation‐type anode and biomass‐derived carbon with high surface area as an ion adsorption cathode in an organic electrolyte, is reported. The advanced architecture of TiO2@CNT@C nanorods, prepared by electrospinning method, demonstrates excellent cyclic stability and outstanding rate capability in half cells. The contribution of extrinsic pseudocapacitance affects the rate capability to a large extent, which is identified by kinetics analysis. A key finding is that ion/electron transfer dynamics of TiO2@CNT@C could be effectively enhanced due to the addition of multiwalled carbon nanotubes. Also, the biomass‐derived carbon with high surface area displays high specific capacity and excellent rate capability. Owing to the merits of structures and excellent performances of both anode and cathode materials, the assembled Na‐ion capacitors provide an exceptionally high energy density (81.2 W h kg?1) and high power density (12 400 W kg?1) within 1.0–4.0 V. Meanwhile, the Na‐ion capacitors achieve 85.3% capacity retention after 5000 cycles tested at 1 A g?1.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号