首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Hard carbon (HC) is the state‐of‐the‐art anode material for sodium‐ion batteries (SIBs). However, its performance has been plagued by the limited initial Coulombic efficiency (ICE) and mediocre rate performance. Here, experimental and theoretical studies are combined to demonstrate the application of lithium‐pretreated HC (LPHC) as high‐performance anode materials for SIBs by manipulating the solid electrolyte interphase in tetraglyme (TEGDME)‐based electrolyte. The LPHC in TEGDME can 1) deliver > 92% ICE and ≈220 mAh g?1 specific capacity, twice of the capacity (≈100 mAh g?1) in carbonate electrolyte; 2) achieve > 85% capacity retention over 1000 cycles at 1000 mA g?1 current density (4 C rate, 1 C = 250 mA g?1) with a specific capacity of ≈150 mAh g?1, ≈15 times of the capacity (10 mAh g?1) in carbonate. The full cell of Na3V2(PO4)3‐LPHC in TEGDME demonstrated close to theoretical specific capacity of ≈98 mAh g?1 based on Na3V2(PO4)3 cathode, ≈2.5 times of the value (≈40 mAh g?1) with nontreated HC. This work provides new perception on the anode development for SIBs.  相似文献   

2.
Uniform pomegranate‐like nanoclusters (NCs) organized by ultrafine transition metal oxide@nitrogen‐doped carbon (TMO@N–C) subunits (diameter ≈ 4 nm) are prepared on a large scale for the first time through a facile, novel, and one‐pot approach. Taking pomegranate‐like Fe3O4@N–C NCs as an example, this unique structure provides short Li+/electron diffusion pathways for electrochemical reactions, structural stability during cycling, and high electrical conductivity, leading to superior electrochemical performance. The resulting pomegranate‐like Fe3O4@N–C NCs possess a high specific capacity (1204.3 mA h g?1 at 0.5 A g?1 over 100 cycles), a stable cycle life (1063.0 mA h g?1 at 1 A g?1, 98.4% retention after 1000 cycles), and excellent rate capacities (606.0 mA h g?1 at 10 A g?1, 92.0% retention; 417.1 mA h g?1 at 20 A g?1, 91.7% retention after 1000 cycles).  相似文献   

3.
“Zero‐strain” compounds are ideal energy‐storage materials for long‐term cycling because they present negligible volume change and significantly reduce the mechanically induced deterioration during charging–discharging. However, the explored “zero‐strain” compounds are very limited, and their energy densities are low. Here, γ phase Li3.08Cr0.02Si0.09V0.9O4 (γ‐LCSVO) is explored as an anode compound for lithium‐ion batteries, and surprisingly its “zero‐strain” Li+ storage during Li+ insertion–extraction is found through using various state‐of‐the‐art characterization techniques. Li+ sequentially inserts into the 4c(1) and 8d sites of γ‐LCSVO, but its maximum unit‐cell volume variation is only ≈0.18%, the smallest among the explored “zero‐strain” compounds. Its mean strain originating from Li+ insertion is only 0.07%. Consequently, both γ‐LCSVO nanowires (γ‐LCSVO‐NW) and micrometer‐sized particles (γ‐LCSVO‐MP) exhibit excellent cycling stability with 90.1% and 95.5% capacity retention after as long as 2000 cycles at 10C, respectively. Moreover, γ‐LCSVO‐NW and γ‐LCSVO‐MP respectively deliver large reversible capacities of 445.7 and 305.8 mAh g?1 at 0.1C, and retain 251.2 and 78.4 mAh g?1 at 10C. Additionally, γ‐LCSVO shows a suitably safe operating potential of ≈1.0 V, significantly lower than that of the famous “zero‐strain” Li4Ti5O12 (≈1.6 V). These merits demonstrate that γ‐LCSVO can be a practical anode compound for stable, high‐energy, fast‐charging, and safe Li+ storage.  相似文献   

4.
Herein, P′2‐type Na0.67[Ni0.1Fe0.1Mn0.8]O2 is introduced as a promising new cathode material for sodium‐ion batteries (SIBs) that exhibits remarkable structural stability during repetitive Na+ de/intercalation. The O? Ni? O? Mn? O? Fe? O bond in the octahedra of transition‐metal layers is used to suppress the elongation of the Mn? O bond and to improve the electrochemical activity, leading to the highly reversible Na storage mechanism. A high discharge capacity of ≈220 mAh g?1 (≈605 Wh kg?1) is delivered at 0.05 C (13 mAg?1) with a high reversible capacity of ≈140 mAh g?1 at 3 C and excellent capacity retention of 80% over 200 cycles. This performance is associated with the reversible P′2–OP4 phase transition and small volume change upon charge and discharge (≈3%). The nature of the sodium storage mechanism in a full cell paired with a hard carbon anode reveals an unexpectedly high energy density of ≈542 Wh kg?1 at 0.2 C and good capacity retention of ≈81% for 500 cycles at 1 C (260 mAg?1).  相似文献   

5.
Several crystal forms of FeOOH are recently reported to be highly promising for lithium storage due to their high capacity, low cost, and environmental friendliness. In particular, β‐FeOOH has shown a capacity of ≈1000 mAh g?1, which is comparable to other promising iron‐based anodes, such as Fe2O3 and Fe3O4. However, its storage mechanisms are unclear and the potential for further improvement remains unexplored. Here, it is shown that this material can have a very high reversible capacity of ≈1400 mAh g?1, which is 20%–40% higher than Fe2O3 and Fe3O4. Such a high capacity is delivered from a series of reactions including intercalation and conversion reactions, formation/deformation of solid‐state electrolyte interface layers and interfacial storage. The mechanisms are studied by a combination of electrochemical and X‐ray absorption near edge spectroscopic approaches. Moreover, very long cycling performance, that is, after even more than 3000 cycles the material still has a significant capacity of more than 800 mAh g?1, is obtained by a simple electrode design involving introducing a rigid support into porous electrodes. Such long cycling performance is for the first time achieved for high‐capacity materials based on conversion reactions.  相似文献   

6.
Developing low‐cost, high‐capacity, high‐rate, and robust earth‐abundant electrode materials for energy storage is critical for the practical and scalable application of advanced battery technologies. Herein, the first example of synthesizing 1D peapod‐like bimetallic Fe2VO4 nanorods confined in N‐doped carbon porous nanowires with internal void space (Fe2VO4?NC nanopeapods) as a high‐capacity and stable anode material for potassium‐ion batteries (KIBs) is reported. The peapod‐like Fe2VO4?NC nanopeapod heterostructures with interior void space and external carbon shell efficiently prevent the aggregation of the active materials, facilitate fast transportation of electrons and ions, and accommodate volume variation during the cycling process, which substantially boosts the rate and cycling performance of Fe2VO4. The Fe2VO4?NC electrode exhibits high reversible specific depotassiation capacity of 380 mAh g?1 at 100 mA g?1 after 60 cycles and remarkable rate capability as well as long cycling stability with a high capacity of 196 mAh g?1 at 4 A g?1 after 2300 cycles. The first‐principles calculations reveal that Fe2VO4?NC nanopeapods have high ionic/electronic conductivity characteristics and low diffusion barriers for K+‐intercalation. This study opens up new way for investigating high‐capacity metal oxide as high‐rate and robust electrode materials for KIBs.  相似文献   

7.
Phosphorus and tin phosphide based materials that are extensively researched as the anode for Na‐ion batteries mostly involve complexly synthesized and sophisticated nanocomposites limiting their commercial viability. This work reports a Sn4P3‐P (Sn:P = 1:3) @graphene nanocomposite synthesized with a novel and facile mechanochemical method, which exhibits unrivalled high‐rate capacity retentions of >550 and 371 mA h g?1 at 1 and 2 A g?1, respectively, over 1000 cycles and achieves excellent rate capability (>815, ≈585 and ≈315 mA h g?1 at 0.1, 2, and 10 A g?1, respectively).  相似文献   

8.
Efficient synthetic methods to produce high‐performance electrode‐active materials are crucial for developing energy storage devices for large‐scale applications, such as hybrid supercapacitors (HSCs). Here, an effective approach to obtain controllable carbon‐encapsulated T‐Nb2O5 nanocrystals (NCs) is presented, based on the solvothermal treatment of NbCl5 in acetophenone. Two separate condensation reactions of acetophenone generate an intimate and homogeneous mixture of Nb2O5 particles and 1,3,5‐triphenylbenzene (TPB), which acts as a unique carbon precursor. The electrochemical performance of the resulting composites as anode electrode materials can be tuned by varying the Nb2O5/TPB ratio. Remarkable performances are achieved for Li‐ion and Na‐ion energy storage systems at high charge–discharge rates (specific capacities of ≈90 mAh g?1 at 100 C rate for lithium and ≈125 mAh g?1 at 20 C for sodium). High energy and power densities are also achieved with Li‐ and Na‐ion HSC devices constructed by using the Nb2O5/C composites as anode and activated carbon (YPF‐50) as cathode, demonstrating the excellent electrochemical properties of the materials synthesized with this approach.  相似文献   

9.
The symmetric batteries with an electrode material possessing dual cathodic and anodic properties are regarded as an ideal battery configuration because of their distinctive advantages over the asymmetric batteries in terms of fabrication process, cost, and safety concerns. However, the development of high‐performance symmetric batteries is highly challenging due to the limited availability of suitable symmetric electrode materials with such properties of highly reversible capacity. Herein, a triple‐hollow‐shell structured V2O5 (THS‐V2O5) symmetric electrode material with a reversible capacity of >400 mAh g?1 between 1.5 and 4.0 V and >600 mAh g?1 between 0.1 and 3.0 V, respectively, when used as the cathode and anode, is reported. The THS‐V2O5 electrodes assembled symmetric full lithium‐ion battery (LIB) exhibits a reversible capacity of ≈290 mAh g?1 between 2 and 4.0 V, the best performed symmetric energy storage systems reported to date. The unique triple‐shell structured electrode makes the symmetric LIB possessing very high initial coulombic efficiency (94.2%), outstanding cycling stability (with 94% capacity retained after 1000 cycles), and excellent rate performance (over 140 mAh g?1 at 1000 mA g?1). The demonstrated approach in this work leaps forward the symmetric LIB performance and paves a way to develop high‐performance symmetric battery electrode materials.  相似文献   

10.
Controlling the internal microstructure and overall morphology of building blocks used to form hybrid materials is crucial for the realization of deterministically designed architectures with desirable properties. Here, integrative spray‐frozen (SF) assembly is demonstrated for forming hierarchically structured open‐porous microspheres (hpMSs) composed of Fe3O4 and reduced graphene oxide (rGO). The SF process drives the formation of a radially aligned microstructure within the sprayed colloidal droplets and also controls the overall microsphere morphology. The spherical Fe3O4/rGO hpMSs contain interconnected open pores, which, when used as a lithium‐ion battery anode, enables them to provide gravimetric and volumetric capacities of 1069.7 mAh g?1 and 686.7 mAh cm?3, much greater than those of samples with similar composition and different morphologies. The hpMSs have good rate and cycling performance, retaining 78.5% capacity from 100 to 1000 mA g?1 and 74.6% capacity over 300 cycles. Using in situ synchrotron X‐ray absorption spectroscopy, the reaction pathway and phase evolution of the hpMSs are monitored enabling observation of the very small domain size and highly disordered nature of FexOy. The reduced capacity fade relative to other conversion systems is due to the good electrical contact between the pulverized FexOy particles and rGO, the overall structural integrity of the hpMSs, and the interconnected open porosity.  相似文献   

11.
Sodium (Na) super ion conductor structured Na3V2(PO4)3 (NVP) is extensively explored as cathode material for sodium‐ion batteries (SIBs) due to its large interstitial channels for Na+ migration. The synthesis of 3D graphene‐like structure coated on NVP nanoflakes arrays via a one‐pot, solid‐state reaction in molten hydrocarbon is reported. The NVP nanoflakes are uniformly coated by the in situ generated 3D graphene‐like layers with the thickness of 3 nm. As a cathode material, graphene covered NVP nanoflakes exhibit excellent electrochemical performances, including close to theoretical reversible capacity (115.2 mA h g?1 at 1 C), superior rate capability (75.9 mA h g?1 at 200 C), and excellent cyclic stability (62.5% of capacity retention over 30000 cycles at 50 C). Furthermore, the 3D graphene‐like cages after removing NVP also serve as a good anode material and deliver a specific capacity of 242.5 mA h g?1 at 0.1 A g?1. The full SIB using these two cathode and anode materials delivers a high specific capacity (109.2 mA h g?1 at 0.1 A g?1) and good cycling stability (77.1% capacity retention over 200 cycles at 0.1 A g?1).  相似文献   

12.
Aqueous rechargeable Ni‐Fe batteries featuring an ultra‐flat discharge plateau, low cost, and outstanding safety characteristics show promising prospects for application in wearable energy storage. In particular, fiber‐shaped Ni‐Fe batteries will enable textile‐based energy supply for wearable electronics. However, the development of fiber‐shaped Ni‐Fe batteries is currently challenged by the performance of fibrous Fe‐based anode materials. In this context, this study describes the fabrication of sulfur‐doped Fe2O3 nanowire arrays (S‐Fe2O3 NWAs) grown on carbon nanotube fibers (CNTFs) as an innovative anode material (S‐Fe2O3 NWAs/CNTF). Encouragingly, first‐principle calculations reveal that S‐doping in Fe2O3 can dramatically reduce the band gap from 2.34 to 1.18 eV and thus enhance electronic conductivity. The novel developed S‐Fe2O3 NWAs/CNTF electrode is further demonstrated to deliver a very high capacity of 0.81 mAh cm?2 at 4 mA cm?2. This value is almost sixfold higher than that of the pristine Fe2O3 NWAs/CNTF electrode. When a cathode containing zinc‐nickel‐cobalt oxide (ZNCO)@Ni(OH)2 NWAs heterostructures is used, 0.46 mAh cm?2 capacity and 67.32 mWh cm?3 energy density are obtained for quasi‐solid‐state fiber‐shaped NiCo‐Fe batteries, which outperform most state‐of‐the‐art fiber‐shaped aqueous rechargeable batteries. These findings offer an innovative and feasible route to design high‐performance Fe‐based anodes and may inspire new development for the next‐generation wearable Ni‐Fe batteries.  相似文献   

13.
Development of a pseudocapacitor over the integration of metal oxide on carbonaceous materials is a promising step towards energy storage devices with high energy and power densities. Here, a self‐assembled cobalt oxide (CoO) nanorod cluster on three‐dimensional graphene (CoO‐3DG) is synthesized through a facile hydrothermal method followed by heat treatment. As an additive‐free electrode, CoO‐3DG exhibits good electrochemical performance. Compared with CoO nanorod clusters grown on Ni foam (i.e., CoO‐Ni, ≈680 F g?1 at 1 A g?1 and ≈400 F g?1 at 20 A g?1), CoO‐3DG achieves much higher capacitance (i.e., ≈980 F g?1 at 1 A g?1 and ≈600 F g?1 at 20 A g?1) with excellent cycling stability of 103% retention of specific capacitance after 10 000 cycles. Furthermore, it shows an interesting activation process and instability with a redox reaction for CoO. In addition, the phase transformation from CoO nanorods to Co3O4 nanostructures was observed and investigated after charge and discharge process, which suggests the activation kinetics and the phase transformable nature of CoO based nanostructure. These observations demonstrate phase transformation with morphological change induced capacitance increasement in the emergent class of metal oxide materials for electrochemical energy storage device.  相似文献   

14.
Advanced electrode materials with bendability and stretchability are critical for the rapid development of fully flexible/stretchable lithium‐ion batteries. However, the sufficiently stretchable lithium‐ion battery is still underdeveloped that is one of the biggest challenges preventing from realizing fully deformable power sources. Here, a low‐temperature hydrothermal synthesis of a cathode material for stretchable lithium‐ion battery is reported by the in situ growth of LiMn2O4 (LMO) nanocrystals inside 3D carbon nanotube (CNT) film networks. The LMO/CNT film composite has demonstrated the chemical bonding between the LMO active materials and CNT scaffolds, which is the most important characteristic of the stretchable electrodes. When coupled with a wrinkled MnOx /CNT film anode, a binder‐free, all‐manganese‐based stretchable full battery cell is assembled which delivers a high average specific capacity of ≈97 mA h g?1 and stabilizes after over 300 cycles with an enormous strain of 100%. Furthermore, combining with other merits such as low cost, natural abundance, and environmentally friendly, the all‐manganese design is expected to accelerate the practical applications of stretchable lithium‐ion batteries for fully flexible and biomedical electronics.  相似文献   

15.
In this work, an ether‐based electrolyte is adopted instead of conventional ester‐based electrolyte for an Sb2O3‐based anode and its enhancement mechanism is unveiled for K‐ion storage. The anode is fabricated by anchoring Sb2O3 onto reduced graphene oxide (Sb2O3‐RGO) and it exhibits better electrochemical performance using an ether‐based electrolyte than that using a conventional ester‐based electrolyte. By optimizing the concentration of the electrolyte, the Sb2O3‐RGO composite delivers a reversible specific capacity of 309 mAh g?1 after 100 cycles at 100 mA g?1. A high specific capacity of 201 mAh g?1 still remains after 3300 cycles (111 days) at 500 mA g?1 with almost no decay, exhibiting a longer cycle life compared with other metallic oxides. In order to further reveal the intrinsic mechanism, the energy changes for K atom migrating from surface into the sublayer of Sb2O3 are explored by density functional theory calculations. According to the result, the battery using the ether‐based electrolyte exhibits a lower energy change and migration barrier than those using other electrolytes for K‐ion, which is helpful to improve the K‐ion storage performance. It is believed that the work can provide deep understanding and new insight to enhance electrochemical performance using ether‐based electrolytes for KIBs.  相似文献   

16.
Herein, a new P2‐type layered oxide is proposed as an outstanding intercalation cathode material for high energy density sodium‐ion batteries (SIBs). On the basis of the stoichiometry of sodium and transition metals, the P2‐type Na0.55[Ni0.1Fe0.1Mn0.8]O2 cathode is synthesized without impurities phase by partially substituting Ni and Fe into the Mn sites. The partial substitution results in a smoothing of the electrochemical charge/discharge profiles and thus greatly improves the battery performance. The P2‐type Na0.55[Ni0.1Fe0.1Mn0.8]O2 cathode delivers an extremely high discharge capacity of 221.5 mAh g?1 with a high average potential of ≈2.9 V (vs Na/Na+) for SIBs. In addition, the fast Na‐ion transport in the P2‐type Na0.55[Ni0.1Fe0.1Mn0.8]O2 cathode structure enables good power capability with an extremely high current density of 2400 mA g?1 (full charge/discharge in 12 min) and long‐term cycling stability with ≈80% capacity retention after 500 cycles at 600 mA g?1. A combination of electrochemical profiles, in operando synchrotron X‐ray diffraction analysis, and first‐principles calculations are used to understand the overall Na storage mechanism of P2‐type Na0.55[Ni0.1Fe0.1Mn0.8]O2.  相似文献   

17.
Sodium‐ion batteries are promising for grid‐scale storage applications due to the natural abundance and low cost of sodium. However, few electrodes that can meet the requirements for practical applications are available today due to the limited routes to exploring new materials. Here, a new strategy is proposed through partially/fully substituting the redox couple of existing negative electrodes in their reduced forms to design the corresponding new positive electrode materials. The power of this strategy is demonstrated through the successful design of new tunnel‐type positive electrode materials of Na0.61[Mn0.61‐xFexTi0.39]O2, composed of non‐toxic and abundant elements: Na, Mn, Fe, Ti. In particular, the designed air‐stable Na0.61[Mn0.27Fe0.34Ti0.39]O2 shows a usable capacity of ≈90 mAh g?1, registering the highest value among the tunnel‐type oxides, and a high storage voltage of 3.56 V, corresponding to the Fe3+/Fe4+ redox couple realized for the first time in non‐layered oxides, which was confirmed by X‐ray absorption spectroscopy and Mössbauer spectroscopy. This new strategy would open an exciting route to explore electrode materials for rechargeable batteries.  相似文献   

18.
Identifying suitable electrode materials for sodium‐ion and potassium‐ion storage holds the key to the development of earth‐abundant energy‐storage technologies. This study reports an anode material based on self‐assembled hierarchical spheroid‐like KTi2(PO4)3@C nanocomposites synthesized via an electrospray method. Such an architecture synergistically combines the advantages of the conductive carbon network and allows sufficient space for the infiltration of the electrolyte from the porous structure, leading to an impressive electrochemical performance, as reflected by the high reversible capacity (283.7 mA h g?1 for Na‐ion batteries; 292.7 mA h g?1 for K‐ion batteries) and superior rate capability (136.1 mA h g?1 at 10 A g?1 for Na‐ion batteries; 133.1 mA h g?1 at 1 A g?1 for K‐ion batteries) of the resulting material. Moreover, the different ion diffusion behaviors in the two systems are revealed to account for the difference in rate performance. These findings suggest that KTi2(PO4)3@C is a promising candidate as an anode material for sodium‐ion and potassium‐ion batteries. In particular, the present synthetic approach could be extended to other functional electrode materials for energy‐storage materials.  相似文献   

19.
A three‐component, flexible electrode is developed for supercapacitors over graphitized carbon fabric, utilizing γ‐MnO2 nanoflowers anchored onto carbon nanotubes (γ‐MnO2/CNT) as spacers for graphene nanosheets (GNs). The three‐component, composite electrode doubles the specific capacitance with respect to GN‐only electrodes, giving the highest‐reported specific capacitance (308 F g?1) for symmetric supercapacitors containing MnO2 and GNs using a two‐electrode configuration, at a scan rate of 20 mV s?1. A maximum energy density of 43 W h kg?1 is obtained for our symmetric supercapacitors at a constant discharge‐current density of 2.5 A g?1 using GN–(γ‐MnO2/CNT)‐nanocomposite electrodes. The fabricated supercapacitor device exhibits an excellent cycle life by retaining ≈90% of the initial specific capacitance after 5000 cycles.  相似文献   

20.
A practical, low‐cost synthesis of hollow mesoporous organic polymer (HMOP) spheres is reported. The electrochemical properties of Li+/Na+‐electrolyte membranes with these spheres substituting for oxide filler particles in poly(ethylene oxide) (PEO)‐filler composite are explored. The electrolyte membranes are mechanically robust, thermally stable to over 250 °C, and block dendrites from a metallic‐lithium/sodium anode. The Li+/Na+ transfer impedance across the lithium/sodium–electrolyte interface is initially acceptable at 65 °C and scavenging of impurities by the porous‐spheres filler lowers this impedance relative to that with Al2O3. All‐solid‐state Li/LiFePO4 and Na/NaTi2(PO4)3 cells give stable discharge capacity of ≈130 and 80 mAh g?1, respectively, at 0.5 C and 65 °C for 100 cycles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号