首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 0 毫秒
1.
High ionic conductivity of up to 6.4 × 10?3 S cm?1 near room temperature (40 °C) in lithium amide‐borohydrides is reported, comparable to values of liquid organic electrolytes commonly employed in lithium‐ion batteries. Density functional theory is applied coupled with X‐ray diffraction, calorimetry, and nuclear magnetic resonance experiments to shed light on the conduction mechanism. A Li4Ti5O12 half‐cell battery incorporating the lithium amide‐borohydride electrolyte exhibits good rate performance up to 3.5 mA cm?2 (5 C) and stable cycling over 400 cycles at 1 C at 40 °C, indicating high bulk and interfacial stability. The results demonstrate the potential of lithium amide‐borohydrides as solid‐state electrolytes for high‐power lithium‐ion batteries.  相似文献   

2.
As performance of halide perovskite devices progresses, the device structure becomes more complex with more layers. Molecular interfacial structures between different layers play an increasingly important role in determining the overall performance in a halide perovskite device. However, current understanding of such interfacial structures at a molecular level nondestructively is limited, partially due to a lack of appropriate analytical tools to probe buried interfacial molecular structures in situ. Here, sum frequency generation (SFG) vibrational spectroscopy, a state‐of‐the‐art nonlinear interface sensitive spectroscopy, is introduced to the halide perovskite research community and is presented as a powerful tool to understand molecule behavior at buried halide perovskite interfaces in situ. It is found that interfacial molecular orientations revealed by SFG can be directly correlated to halide perovskite device performance. Here how SFG can examine molecular structures (e.g., orientations) at the perovskite/hole transporting layer and perovskite/electron transporting layer interfaces is discussed. This will promote the use of SFG to investigate molecular structures of buried interfaces in various halide perovskite materials and devices in situ nondestructively with a sub‐monolayer interface sensitivity. Such research will help to elucidate structure–function relationships of buried interfaces, aiding in the rational design/development of halide perovskite materials/devices with improved performance.  相似文献   

3.
A flexible composite solid electrolyte membrane consisting of inorganic solid particles (Li1.3Al0.3Ti1.7(PO4)3), polyethylene oxide (PEO), and boronized polyethylene glycol (BPEG) is prepared and investigated. This membrane exhibits good stability against lithium dendrite, which can be attributed to its well‐designed combination components: the compact inorganic lithium ion conducting layer provides the membrane with good mechanical strength and physically barricades the free growth of lithium dendrite; while the addition of planar BPEG oligomers not only disorganizes the crystallinity of the PEO domain, leading to good ionic conductivity, but also facilitates a “soft contact” between interfaces, which not only chemically enables homogeneous lithium plating/stripping on the lithium metal anode, but also reduces the polarization effects. In addition, by employing this membrane to a LiFePO4/Li cell and testing its galvanostatic cycling performances at 60 °C, capacities of 158.2 and 94.2 mA h g?1 are delivered at 0.1 C and 2 C, respectively.  相似文献   

4.
5.
6.
7.
8.
To reconcile the energy storage ability and operational safety of lithium metal batteries (LMBs), a transformation from a liquid to a solid‐state system is required. However, Li volume variation, poor interfacial contact, and high operation temperatures hinder its practical applications. To address the above issues, here, an integral structure design for solid‐state LMBs is shown, in which a Li‐preinfused 3D carbon fiber (Li/CF) anode is ionically connected to a cathode via an autopolymerized gel electrolyte. The gel electrolyte helps to encapsulate the liquid electrolyte within the Li/CF anode and the cathode to improve the interfacial contact. The gel also serves as a reservoir that balances the liquid electrolyte supply during repeated Li stripping/plating process. As a result, the symmetrical cells and full cells with Li/CF electrodes exhibit improved cycling stability and effective suppression of dendrites at ambient temperature. This work facilitates the realization of solid‐state LMBs with high energy and high safety.  相似文献   

9.
10.
11.
12.
A high voltage LiNi0.5Mn0.3Co0.2O2/graphite cell with a fluorinated electrolyte formulation 1.0 m LiPF6 fluoroethylene carbonate/bis(2,2,2‐trifluoroethyl) carbonate is reported and its electrochemical performance is evaluated at cell voltage of 4.6 V. Comparing with its nonfluorinated electrolyte counterpart, the reported fluorinated one shows much improved Coulombic efficiency and capacity retention when a higher cut‐off voltage (4.6 V) is applied. Scanning electron microscopy/energy dispersive X‐ray spectroscopy and X‐ray photoelectron spectroscopy data clearly demonstrate the superior oxidative stability of the new electrolyte. The structural stability of the bulk cathode materials cycled with different electrolytes is extensively studied by X‐ray absorption near edge structure and X‐ray diffraction.  相似文献   

13.
14.
15.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号