首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Since their commercialization by Sony in 1991, graphite anodes in combination with various cathodes have enabled the widespread success of lithium‐ion batteries (LIBs), providing over 10 billion rechargeable batteries to the global population. Next‐generation nonaqueous alkali metal‐ion batteries, namely sodium‐ion batteries (SIBs) and potassium‐ion batteries (PIBs), are projected to utilize intercalation‐based carbon anodes as well, due to their favorable electrochemical properties. While traditionally graphite anodes have dominated the market share of LIBs, other carbon materials have been investigated, including graphene, carbon nanotubes, and disordered carbons. The relationship between carbon material properties, electrochemical performance, and charge storage mechanisms is clarified for these alkali metal‐ion batteries, elucidating possible strategies for obtaining enhanced cycling stability, specific capacity, rate capability, and safety aspects. As a key component in determining cell performance, the solid electrolyte interphase layer is described in detail, particularly for its dependence on the carbon anode. Finally, battery safety at extreme temperatures is discussed, where carbon anodes are susceptible to dendrite formation, accelerated aging, and eventual thermal runaway. As society pushes toward higher energy density LIBs, this review aims to provide guidance toward the development of sustainable next‐generation SIBs and PIBs.  相似文献   

2.
Sodium‐ion batteries (SIBs) are now being actively developed as low cost and sustainable alternatives to lithium‐ion batteries (LIBs) for large‐scale electric energy storage applications. In recent years, various inorganic and organic Na compounds, mostly mimicked from their Li counterparts, have been synthesized and tested for SIBs, and some of them indeed demonstrate comparable specific capacity to the presently developed LIB electrodes. However, the lack of suitable cathode materials is still a major obstacle to the commercial development of SIBs. Here, we present a brief review on the recent developments of SIB cathodes, with a focus on low cost and high energy density materials (> 450 Wh kg?1 vs Na) together with discussion of their Na‐storage mechanisms. The considerable differences in the structural requirements for Li‐ and Na‐storage reactions mean that it is not sufficient to design SIB cathode materials by simply mimicking LIB materials, and therefore great efforts are needed to discover new materials and reaction mechanisms to further develop variable cathodes for advanced SIB technology. Some directions for future research and possible strategies for building advanced cathode materials are also proposed here.  相似文献   

3.
Lithium‐ion batteries (LIBs) with outstanding energy and power density have been extensively investigated in recent years, rendering them the most suitable energy storage technology for application in emerging markets such as electric vehicles and stationary storage. More recently, sodium, one of the most abundant elements on earth, exhibiting similar physicochemical properties as lithium, has been gaining increasing attention for the development of sodium‐ion batteries (SIBs) in order to address the concern about Li availability and cost—especially with regard to stationary applications for which size and volume of the battery are of less importance. Compared with traditional intercalation reactions, conversion reaction‐based transition metal oxides (TMOs) are prospective anode materials for rechargeable batteries thanks to their low cost and high gravimetric specific capacities. In this review, the recent progress and remaining challenges of conversion reactions for LIBs and SIBs are discussed, covering an overview about the different synthesis methods, morphological characteristics, as well as their electrochemical performance. Potential future research directions and a perspective toward the practical application of TMOs for electrochemical energy storage are also provided.  相似文献   

4.
Mixed metal sulfides (MMSs) have attracted increased attention as promising electrode materials for electrochemical energy storage and conversion systems including lithium‐ion batteries (LIBs), sodium‐ion batteries (SIBs), hybrid supercapacitors (HSCs), metal–air batteries (MABs), and water splitting. Compared with monometal sulfides, MMSs exhibit greatly enhanced electrochemical performance, which is largely originated from their higher electronic conductivity and richer redox reactions. In this review, recent progresses in the rational design and synthesis of diverse MMS‐based micro/nanostructures with controlled morphologies, sizes, and compositions for LIBs, SIBs, HSCs, MABs, and water splitting are summarized. In particular, nanostructuring, synthesis of nanocomposites with carbonaceous materials and fabrication of 3D MMS‐based electrodes are demonstrated to be three effective approaches for improving the electrochemical performance of MMS‐based electrode materials. Furthermore, some potential challenges as well as prospects are discussed to further advance the development of MMS‐based electrode materials for next‐generation electrochemical energy storage and conversion systems.  相似文献   

5.
Sodium‐ion batteries (SIBs) have the potential to be practically applied in large‐scale energy storage markets. The rapid progress of SIBs research is primarily focused on electrodes, while electrolytes attract less attention. Indeed, the improvement of electrode performance is arguably correlated with the electrolyte optimization. In conventional lithium‐ion batteries (LIBs), ether‐based electrolytes are historically less practical owing to the insufficient passivation of both anodes and cathodes. As an important class of aprotic electrolytes, ethers have revived with the emerging lithium‐sulfur and lithium‐oxygen batteries in recent years, and are even booming in the wave of SIBs. Ether‐based electrolytes are unique to enabling these new battery chemistries in terms of producing stable ternary graphite intercalation compounds, modifying anode solid electrolyte interphases, reducing the solubility of intermediates, and decreasing polarization. Better still, ether‐based electrolytes are compatible with specific inorganic cathodes and could catalyze the assembly of full SIBs prototypes. This Research News article aims to summarize the recent critical reports on ether‐based electrolytes in sodium‐based batteries, to unveil the uniqueness of ether‐based electrolytes to advancing diverse electrode materials, and to shed light on the viability and challenges of ether‐based electrolytes in future sodium‐based battery chemistries.  相似文献   

6.
As the rapid growth of the lithium‐ion battery (LIB) market raises concerns about limited lithium resources, rechargeable sodium‐ion batteries (SIBs) are attracting growing attention in the field of electrical energy storage due to the large abundance of sodium. Compared with the well‐developed commercial LIBs, all components of the SIB system, such as the electrode, electrolyte, binder, and separator, need further exploration before reaching a practical industrial application level. Drawing lessons from the LIB research, the SIB electrode materials are being extensively investigated, resulting in tremendous progress in recent years. In this article, the progress of the research on the development of electrode materials for SIBs is summarized. A variety of new electrode materials for SIBs, including transition‐metal oxides with a layered or tunnel structure, polyanionic compounds, and organic molecules, have been proposed and systematically investigated. Several promising materials with moderate energy density and ultra‐long cycling performance are demonstrated. Appropriate doping and/or surface treatment methodologies are developed to effectively promote the electrochemical properties. The challenges of and opportunities for exploiting satisfactory SIB electrode materials for practical applications are outlined.  相似文献   

7.
In response to the change of energy landscape, sodium‐ion batteries (SIBs) are becoming one of the most promising power sources for the post‐lithium‐ion battery (LIB) era due to the cheap and abundant nature of sodium, and similar electrochemical properties to LIBs. The electrochemical performance of electrode materials for SIBs is closely bound up with their crystal structures and intrinsic electronic/ionic states. Apart from nanoscale design and conductive composite strategies, heteroatom doping is another effective way to enhance the intrinsic transfer characteristics of sodium ions and electrons in crystal structures to accelerate reaction kinetics and thereby achieve high performance. In this review, the recent advancements in heteroatom doping for sodium ion storage of electrode materials are reviewed. Specifically, different doping strategies including nonmetal element doping (e.g., nitrogen, sulfur, phosphorous, boron, fluorine), metal element doping (magnesium, titanium, iron, aluminum, nickel, copper, etc.), and dual/triple doping (such as N–S, N–P, N–S–P) are reviewed and summarized in detail. Furthermore, various doping methods are introduced and their advantages and disadvantages are discussed. The doping effect on crystal structure and intrinsic electronic/ionic state are illustrated and the relationship with capacity and energy/power density is interrogated. Finally, future development trends in doping strategies for advanced SIBs electrodes are analyzed.  相似文献   

8.
Graphene‐containing nanomaterials have emerged as important candidates for electrode materials in lithium‐ion batteries (LIBs) due to their unique physical properties. In this review, a brief introduction to recent developments in graphene‐containing nanocomposite electrodes and their derivatives is provided. Subsequently, synthetic routes to nanoparticle/graphene composites and their electrochemical performance in LIBs are highlighted, and the current state‐of‐the‐art and most recent advances in the area of graphene‐containing nanocomposite electrode materials are summarized. The limitations of graphene‐containing materials for energy storage applications are also discussed, with an emphasis on anode and cathode materials. Potential research directions for the future development of graphene‐containing nanocomposites are also presented, with an emphasis placed on practicality and scale‐up considerations for taking such materials from benchtop curiosities to commercial products.  相似文献   

9.
Since their successful commercialization in 1990s, lithium‐ion batteries (LIBs) have been widely applied in portable digital products. The energy density and power density of LIBs are inadequate, however, to satisfy the continuous growth in demand. Considering the cost distribution in battery system, it is essential to explore cathode/anode materials with excellent rate capability and long cycle life. Nanometer‐sized electrode materials could quickly take up and store numerous Li+ ions, afforded by short diffusion channels and large surface area. Unfortunately, low thermodynamic stability of nanoparticles results in electrochemical agglomeration and raises the risk of side reactions on electrolyte. Thus, micro/nano and hetero/hierarchical structures, characterized by ordered assembly of different sizes, phases, and/or pores, have been developed, which enable us to effectively improve the utilization, reaction kinetics, and structural stability of electrode materials. This review summarizes the recent efforts on electrode materials with hierarchical structures, and discusses the effects of hierarchical structures on electrochemical performance in detail. Multidimensional self‐assembled structures can achieve integration of the advantages of materials with different sizes. Core/yolk–shell structures provide synergistic effects between the shell and the core/yolk. Porous structures with macro‐, meso‐, and micropores can accommodate volume expansion and facilitate electrolyte infiltration.  相似文献   

10.
Covalent–organic frameworks (COFs), featuring structural diversity, framework tunability and functional versatility, have emerged as promising organic electrode materials for rechargeable batteries and garnered tremendous attention in recent years. The adjustable pore configuration, coupled with the functionalization of frameworks through pre‐ and post‐synthesis strategies, enables a precise customization of COFs, which provides a novel perspective to deepen the understanding of the fundamental problems of organic electrode materials. In this review, a summary of the recent research into COFs electrode materials for rechargeable batteries including lithium‐ion batteries, sodium‐ion batteries, potassium‐ion batteries, and aqueous zinc batteries is provided. In addition, this review will also cover the working principles, advantages and challenges, strategies to improve electrochemical performance, and applications of COFs in rechargeable batteries.  相似文献   

11.
Scrupulous design and smart hybridization of bespoke electrode materials are of great importance for the advancement of sodium ion batteries (SIBs). Graphene‐based nanocomposites are regarded as one of the most promising electrode materials for SIBs due to the outstanding physicochemical properties of graphene and positive synergetic effects between graphene and the introduced active phase. In this review, the recent progress in graphene‐based electrode materials for SIBs with an emphasis on the electrode design principle, different preparation methods, and mechanism, characterization, synergistic effects, and their detailed electrochemical performance is summarized. General design rules for fabrication of advanced SIB materials are also proposed. Additionally, the merits and drawbacks of different fabrication methods for graphene‐based materials are briefly discussed and summarized. Furthermore, multiscale forms of graphene are evaluated to optimize electrochemical performance of SIBs, ranging from 0D graphene quantum dots, 2D vertical graphene and reduced graphene oxide sheets, to 3D graphene aerogel and graphene foam networks. To conclude, the challenges and future perspectives on the development of graphene‐based materials for SIBs are also presented.  相似文献   

12.
Lithium‐ion batteries (LIBs) have dominated the portable electronics industry and solid‐state electrochemical research and development for the past two decades. In light of possible concerns over the cost and future availability of lithium, sodium‐ion batteries (SIBs) and other new technologies have emerged as candidates for large‐scale stationary energy storage. Research in these technologies has increased dramatically with a focus on the development of new materials for both the positive and negative electrodes that can enhance the cycling stability, rate capability, and energy density. Two‐dimensional (2D) materials are showing promise for many energy‐related applications and particularly for energy storage, because of the efficient ion transport between the layers and the large surface areas available for improved ion adsorption and faster surface redox reactions. Recent research highlights on the use of 2D materials in these future ‘beyond‐lithium‐ion’ battery systems are reviewed, and strategies to address challenges are discussed as well as their prospects.  相似文献   

13.
Considering the natural abundance and low cost of sodium resources, sodium‐ion batteries (SIBs) have received much attention for large‐scale electrochemical energy storage. However, smart structure design strategies and good mechanistic understanding are required to enable advanced SIBs with high energy density. In recent years, the exploration of advanced cathode, anode, and electrolyte materials, as well as advanced diagnostics have been extensively carried out. This review mainly focuses on the challenging problems for the attractive battery materials (i.e., cathode, anode, and electrolytes) and summarizes the latest strategies to improve their electrochemical performance as well as presenting recent progress in operando diagnostics to disclose the physics behind the electrochemical performance and to provide guidance and approaches to design and synthesize advanced battery materials. Outlook and perspectives on the future research to build better SIBs are also provided.  相似文献   

14.
The demand for electrochemical energy storage technologies is rapidly increasing due to the proliferation of renewable energy sources and the emerging markets of grid‐scale battery applications. The properties of batteries are ideal for most electrical energy storage (EES) needs, yet, faced with resource constraints, the ability of current lithium‐ion batteries (LIBs) to match this overwhelming demand is uncertain. Sodium‐ion batteries (SIBs) are a novel class of batteries with similar performance characteristics to LIBs. Since they are composed of earth‐abundant elements, cheaper and utility scale battery modules can be assembled. As a result of the learning curve in the LIB technology, a phenomenal progression in material development has been realized in the SIB technology. In this review, innovative strategies used in SIB material development, and the electrochemical properties of anode, cathode, and electrolyte combinations are elucidated. Attractive performance characteristics are herein evidenced, based on comparative gravimetric and volumetric energy densities to state‐of‐the‐art LIBs. In addition, opportunities and challenges toward commercialization are herein discussed based on patent data trend analysis. With extensive industrial adaptations expected, the commercial prospects of SIBs look promising and this once discarded technology is set to play a major role in EES applications.  相似文献   

15.
The increasing demand for replacing conventional fossil fuels with clean energy or economical and sustainable energy storage drives better battery research today. Sodium‐ion batteries (SIBs) are considered as a promising alternative for grid‐scale storage applications due to their similar “rocking‐chair” sodium storage mechanism to lithium‐ion batteries, the natural abundance, and the low cost of Na resources. Searching for appropriate electrode materials with acceptable electrochemical performance is the key point for development of SIBs. Layered transition metal oxides represent one of the most fascinating electrode materials owing to their superior specific capacity, environmental benignity, and facile synthesis. However, three major challenges (irreversible phase transition, storage instability, and insufficient battery performance) are known for cathodes in SIBs. Herein, a comprehensive review on the latest advances and progresses in the exploration of layered oxides for SIBs is presented, and a detailed and deep understanding of the relationship of phase transition, air stability, and electrochemical performance in layered oxide cathodes is provided in terms of refining the structure–function–property relationship to design improved battery materials. Layered oxides will be a competitive and attractive choice as cathodes for SIBs in next‐generation energy storage devices.  相似文献   

16.
Utilizing redox‐active organic compounds for future energy storage system (ESS) has attracted great attention owing to potential cost efficiency and environmental sustainability. Beyond enriching the pool of organic electrode materials with molecular tailoring, recent scientific efforts demonstrate the innovations in various cell chemistries and configurations. Herein, recent major strategies to build better organic batteries, are highlighted: diversifying charge‐carrying ions, modifying electrolytes, and utilizing liquid‐type organic electrodes. Each approach is summarized along with their advantages over Li‐ion batteries (LIBs). An outlook is also provided on the practical realization of organic battery systems, which hints at possible solutions for future sustainable ESSs.  相似文献   

17.
High‐performance and lost‐cost lithium‐ion and sodium‐ion batteries are highly desirable for a wide range of applications including portable electronic devices, transportation (e.g., electric vehicles, hybrid vehicles, etc.), and renewable energy storage systems. Great research efforts have been devoted to developing alternative anode materials with superior electrochemical properties since the anode materials used are closely related to the capacity and safety characteristics of the batteries. With the theoretical capacity of 2596 mA h g?1, phosphorus is considered to be the highest capacity anode material for sodium‐ion batteries and one of the most attractive anode materials for lithium‐ion batteries. This work provides a comprehensive study on the most recent advancements in the rational design of phosphorus‐based anode materials for both lithium‐ion and sodium‐ion batteries. The currently available approaches to phosphorus‐based composites along with their merits and challenges are summarized and discussed. Furthermore, some present underpinning issues and future prospects for the further development of advanced phosphorus‐based materials for energy storage/conversion systems are discussed.  相似文献   

18.
Numerous benefits of porous electrode materials for lithium ion batteries (LIBs) have been demonstrated, including examples of higher rate capabilities, better cycle lives, and sometimes greater gravimetric capacities at a given rate compared to nonporous bulk materials. These properties promise advantages of porous electrode materials for LIBs in electric and hybrid electric vehicles, portable electronic devices, and stationary electrical energy storage. This review highlights methods of synthesizing porous electrode materials by templating and template‐free methods and discusses how the structural features of porous electrodes influence their electrochemical properties. A section on electrochemical properties of porous electrodes provides examples that illustrate the influence of pore and wall architecture and interconnectivity, surface area, particle morphology, and nanocomposite formation on the utilization of the electrode materials, specific capacities, rate capabilities, and structural stability during lithiation and delithiation processes. Recent applications of porous solids as components for three‐dimensionally interpenetrating battery architectures are also described.  相似文献   

19.
Zwitterions, a class of materials that contain covalently bonded cations and anions, have been extensively studied in the past decades owing to their special features, such as excellent solubility in polar solvents, for solution processing and dipole formation for the transfer of carriers and ions. Recently, zwitterions have been developed as electrode modifiers for organic solar cells (OSCs), perovskite solar cells (PVSCs), and organic light‐emitting devices (OLEDs), as well as electrolyte additives for lithium ion batteries (LIBs). With the rapid advances of zwitterionic materials, high‐performance devices have been constructed with enhanced efficiencies by introducing them as interface layers and electrolyte additives. In this review, recent progress in OSCs, PVSCs, OLEDs, and LIBs by using zwitterions is highlighted. The authors also elaborate the role of various zwitterionic materials as interfacial layers and additives for highly efficient OSCs, PVSCs, OLEDs, and LIBs. This article presents an overview of device performance of zwitterionic materials. The structure–property relationship is also discussed. Finally, the prospects of zwitterion materials are also addressed.  相似文献   

20.
Sodium‐ion batteries (SIBs) have been considered as the most promising candidate for large‐scale energy storage system owing to the economic efficiency resulting from abundant sodium resources, superior safety, and similar chemical properties to the commercial lithium‐ion battery. Despite the long period of academic research, how to realize sodium‐ion battery commercialization for market applications is still a great challenge. Thus, from the perspective of future practical application, this review will identify the factors that are restricting commercialization, and evaluate the existing active materials and sodium‐ion‐based full‐cell system. The design and development trends that are needed for SIBs to meet the requirements of practical applications in large‐scale energy storage will also be discussed in detail.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号