首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Transition metal sulfides, as an important class of inorganics, can be used as excellent electrode materials for various types of electrochemical energy storage, such as lithium‐ion batteries, sodium‐ion batteries, supercapacitors, and others. Recent works have identified that mixing graphene or graphene derivatives with transition metal sulfides can result in novel composites with better electrochemical performance. This review summarizes the latest advances in transition metal sulfide composites with graphene or graphene derivatives. The synthetic strategies and morphologies of these composites are introduced. The authors then discuss their applications in lithium‐ion batteries, sodium‐ion batteries, and supercapacitors. Finally, the authors give their personal viewpoints about the challenges and opportunities for the future development about this direction.  相似文献   

2.
Although layered lithium oxides have become the cathode of choice for state‐of‐the‐art Li‐ion batteries, substantial gaps remain between the practical and theoretical energy densities. With the aim of supporting efforts to close this gap, this work reviews the fundamental operating mechanisms and challenges of Li intercalation in layered oxides, contrasts how these challenges play out differently for different materials (with emphasis on Ni–Co–Al (NCA) and Ni–Mn–Co (NMC) alloys), and summarizes the extensive corpus of modifications and extensions to the layered lithium oxides. Particular emphasis is given to the fundamental mechanisms behind the operation and degradation of layered intercalation electrode materials as well as novel modifications and extensions, including Na‐ion and cation‐disordered materials.  相似文献   

3.
Room‐temperature rechargeable sodium‐ion batteries are considered as a promising alternative technology for grid and other storage applications due to their competitive cost benefit and sustainable resource supply, triumphing other battery systems on the market. To facilitate the practical realization of the sodium‐ion technology, the energy density of sodium‐ion batteries needs to be boosted to the level of current commercial Li‐ion batteries. An effective approach would be to elevate the operating voltage of the battery, which requires the use of electrochemically stable cathode materials with high voltage versus Na+/Na. This review summarizes the recent progress with the emerging high‐voltage cathode materials for room‐temperature sodium‐ion batteries, which include layered transitional‐metal oxides, Na‐rich materials, and polyanion compounds. The key challenges and corresponding strategies for these materials are also discussed, with an emphasis placed on the intrinsic structural properties, Na storage electrochemistry, and the voltage variation tendency with respect to the redox reactions. The insights presented in this article can serve as a guide for improving the energy densities of room‐temperature Na‐ion batteries.  相似文献   

4.
Alkaline oxygen electrocatalysis, targeting anion exchange membrane fuel cells, Zn‐air batteries, and alkaline‐based Li‐air batteries, has become a subject of intensive investigation because of its advantages compared to its acidic counterparts in reaction kinetics and materials stability. However, significant breakthroughs in the design and synthesis of efficient oxygen reduction catalysts from earth‐abundant elements instead of precious metals in alkaline media remain in high demand. Carbon composite materials have been recognized as the most promising because of their reasonable balance between catalytic activity, durability, and cost. In particular, heteroatom (e.g., N, S, B, or P) doping can tune the electronic and geometric properties of carbon, providing more active sites and enhancing the interaction between carbon structure and active sites. Importantly, involvement of transition metals appears to be necessary for achieving high catalytic activity and improved durability by catalyzing carbonization of nitrogen/carbon precursors to form highly graphitized carbon nanostructures with more favorable nitrogen doping. Recently, a synergetic effect was found between the active species in nanocarbon and the loaded oxides/sulfides, resulting in much improved activity. This report focuses on these carbon composite catalysts. Guidance for rational design and synthesis of advanced alkaline ORR catalysts with improved activity and performance durability is also presented.  相似文献   

5.
The recent trend in zinc (Zn) anode aqueous batteries has been to explore layered structures like manganese dioxides and vanadium oxides as Zn‐ion intercalation hosts. These structures, although novel, face limitations like their layered counterparts in lithium (Li)‐ion batteries, where the capacity is limited to the host's intercalation capacity. In this paper, a new strategy is proposed in enabling new generation of energy dense aqueous‐based batteries, where the conversion reactions of rock salt/spinel manganese oxides and carbon nanotube‐nested nanosized Zn electrodes are exploited to extract significantly higher capacity compared to intercalation systems. Accessing the conversion reactions allows to achieve high capacities of 750 mAh g?1 (≈30 mAh cm?2) from manganese oxide (MnO) and 810 mAh g?1 (≈30 mAh cm?2) from nanoscale Zn anodes, respectively. The high areal capacities help to attain unprecedented energy densities of 210 Wh per L‐cell and 320 Wh per kg‐total (398 Wh per kg‐active) from aqueous MnO|CNT‐Zn batteries, which allows an assessment of its viable use in a small‐scale automobile.  相似文献   

6.
Since the first report of using micromechanical cleavage method to produce graphene sheets in 2004, graphene/graphene‐based nanocomposites have attracted wide attention both for fundamental aspects as well as applications in advanced energy storage and conversion systems. In comparison to other materials, graphene‐based nanostructured materials have unique 2D structure, high electronic mobility, exceptional electronic and thermal conductivities, excellent optical transmittance, good mechanical strength, and ultrahigh surface area. Therefore, they are considered as attractive materials for hydrogen (H2) storage and high‐performance electrochemical energy storage devices, such as supercapacitors, rechargeable lithium (Li)‐ion batteries, Li–sulfur batteries, Li–air batteries, sodium (Na)‐ion batteries, Na–air batteries, zinc (Zn)–air batteries, and vanadium redox flow batteries (VRFB), etc., as they can improve the efficiency, capacity, gravimetric energy/power densities, and cycle life of these energy storage devices. In this article, recent progress reported on the synthesis and fabrication of graphene nanocomposite materials for applications in these aforementioned various energy storage systems is reviewed. Importantly, the prospects and future challenges in both scalable manufacturing and more energy storage‐related applications are discussed.  相似文献   

7.
Improving the lithium (Li) storage properties of silicon (Si)‐based anode materials is of great significance for the realization of advanced Li‐ion batteries. The major challenge is to make Si‐based anode materials maintain electronic conduction and structural integrity during cycling. Novel carbon‐coated Si nanoparticles (NPs)/reduced graphene oxides (rGO) composites are synthesized through simple solution mixing and layer‐by‐layer assembly between polydopamine‐coated Si NPs and graphene oxide nanosheets by filtration, followed by a thermal reduction. The anodic properties of this composite demonstrate the potency of the novel hybrid design based on two dimensional materials for extremely reversible energy conversion and storage. A high capacity and an extremely stable cycle life are simultaneously realized with carbon‐coated Si/rGO composite, which has a sandwich structure. The unprecedented electrochemical performance of this composite can be ascribed to the synergistic effect of polydopamine and rGO. The polydopamine layer forms strong hydrogen bonding with rGO through chemical cross‐linking, thus firmly anchoring Si NPs on rGO sheets to prevent the aggregation of Si NPs and their electronic contact loss. Finally, its structural feature with stacked rGO clipping carbon‐coated Si NPs inside it enables to keep the overall electrode highly conductive and mechanically robust, thus maintaining its initial capacity even with extended cycling.  相似文献   

8.
The increasing demand for replacing conventional fossil fuels with clean energy or economical and sustainable energy storage drives better battery research today. Sodium‐ion batteries (SIBs) are considered as a promising alternative for grid‐scale storage applications due to their similar “rocking‐chair” sodium storage mechanism to lithium‐ion batteries, the natural abundance, and the low cost of Na resources. Searching for appropriate electrode materials with acceptable electrochemical performance is the key point for development of SIBs. Layered transition metal oxides represent one of the most fascinating electrode materials owing to their superior specific capacity, environmental benignity, and facile synthesis. However, three major challenges (irreversible phase transition, storage instability, and insufficient battery performance) are known for cathodes in SIBs. Herein, a comprehensive review on the latest advances and progresses in the exploration of layered oxides for SIBs is presented, and a detailed and deep understanding of the relationship of phase transition, air stability, and electrochemical performance in layered oxide cathodes is provided in terms of refining the structure–function–property relationship to design improved battery materials. Layered oxides will be a competitive and attractive choice as cathodes for SIBs in next‐generation energy storage devices.  相似文献   

9.
Ni‐rich layered oxides and Li‐rich layered oxides are topics of much research interest as cathodes for Li‐ion batteries due to their low cost and higher discharge capacities compared to those of LiCoO2 and LiMn2O4. However, Ni‐rich layered oxides have several pitfalls, including difficulty in synthesizing a well‐ordered material with all Ni3+ ions, poor cyclability, moisture sensitivity, a thermal runaway reaction, and formation of a harmful surface layer caused by side reactions with the electrolyte. Recent efforts towards Ni‐rich layered oxides have centered on optimizing the composition and processing conditions to obtain controlled bulk and surface compositions to overcome the capacity fade. Li‐rich layered oxides also have negative aspects, including oxygen loss from the lattice during first charge, a large first cycle irreversible capacity loss, poor rate capability, side reactions with the electrolyte, low tap density, and voltage decay during extended cycling. Recent work on Li‐rich layered oxides has focused on understanding the surface and bulk structures and eliminating the undesirable properties. Followed by a brief introduction, an account of recent developments on the understanding and performance gains of Ni‐rich and Li‐rich layered oxide cathodes is provided, along with future research directions.  相似文献   

10.
The electrochemical performance of mesoporous carbon (C)/tin (Sn) anodes in Na‐ion and Li‐ion batteries is systematically investigated. The mesoporous C/Sn anodes in a Na‐ion battery shows similar cycling stability but lower capacity and poorer rate capability than that in a Li‐ion battery. The desodiation potentials of Sn anodes are approximately 0.21 V lower than delithiation potentials. The low capacity and poor rate capability of C/Sn anode in Na‐ion batteries is mainly due to the large Na‐ion size, resulting in slow Na‐ion diffusion and large volume change of porous C/Sn composite anode during alloy/dealloy reactions. Understanding of the reaction mechanism between Sn and Na ions will provide insight towards exploring and designing new alloy‐based anode materials for Na‐ion batteries.  相似文献   

11.
Owing to the ever‐increasing safety concerns about conventional lithium‐ion batteries, whose applications have expanded to include electric vehicles and grid‐scale energy storage, batteries with solidified electrolytes that utilize nonflammable inorganic materials are attracting considerable attention. In particular, owing to their superionic conductivities (as high as ≈10?2 S cm?1) and deformability, sulfide materials as the solid electrolytes (SEs) are considered the enabling material for high‐energy bulk‐type all‐solid‐state batteries. Herein the authors provide a brief review on recent progress in sulfide Li‐ and Na‐ion SEs for all‐solid‐state batteries. After the basic principles in designing SEs are considered, the experimental exploration of multicomponent systems and ab initio calculations that accelerate the search for stronger candidates are discussed. Next, other issues and challenges that are critical for practical applications, such as instability in air, electrochemical stability, and compatibility with active materials, are discussed. Then, an emerging progress in liquid‐phase synthesis and solution process of SEs and its relevant prospects in ensuring intimate ionic contacts and fabricating sheet‐type electrodes is highlighted. Finally, an outlook on the future research directions for all‐solid‐state batteries employing sulfide superionic conductors is provided.  相似文献   

12.
A flexible and free‐standing porous carbon nanofibers/selenium composite electrode (Se@PCNFs) is prepared by infiltrating Se into mesoporous carbon nanofibers (PCNFs). The porous carbon with optimized mesopores for accommodating Se can synergistically suppress the active material dissolution and provide mechanical stability needed for the film. The Se@PCNFs electrode exhibits exceptional electrochemical performance for both Li‐ion and Na‐ion storage. In the case of Li‐ion storage, it delivers a reversible capacity of 516 mAh g?1 after 900 cycles without any capacity loss at 0.5 A g?1. Se@PCNFs still delivers a reversible capacity of 306 mAh g?1 at 4 A g?1. While being used in Na‐Se batteries, the composite electrode maintains a reversible capacity of 520 mAh g?1 after 80 cycles at 0.05 A g?1 and a rate capability of 230 mAh g?1 at 1 A g?1. The high capacity, good cyclability, and rate capability are attributed to synergistic effects of the uniform distribution of Se in PCNFs and the 3D interconnected PCNFs framework, which could alleviate the shuttle reaction of polyselenides intermediates during cycling and maintain the perfect electrical conductivity throughout the electrode. By rational and delicate design, this type of self‐supported electrodes may hold great promise for the development of Li‐Se and Na‐Se batteries with high power and energy densities.  相似文献   

13.
Ultrahigh‐Ni layered oxides hold great promise as high‐energy‐density cathodes at an affordable cost for lithium‐ion batteries, yet their practical application is greatly hampered by the poor cyclability. Herein, by employing LiNi0.94Co0.06O2 as a model cathode in a full‐cell configuration, the interphasial and structural evolution processes of ultrahigh‐Ni layered oxides are systematically investigated over the course of their service life (1500 cycles). By applying advanced analytic techniques (e.g., Li‐isotope labeling, region‐of‐interest method), the dynamic chemical evolution on the cathode surface is revealed with spatial resolution, and the correlation between lattice distortion and cathode surface reactivity is established. Benefiting from in situ X‐ray diffraction (XRD) analysis, the ultrahigh‐Ni layered oxide is demonstrated to undergo dual‐phase reaction mechanisms with huge lattice variation, which leads to a decrease in crystallinity and secondary particle pulverization. Furthermore, the critical impact of cathode surface reaction on the graphite anode–electrolyte interphase (AEI) is revealed at nanometer scale, and a universal chemical/physical evolution process of the AEI is illustrated, for the first time. Finally, the practical viability of ultrahigh‐Ni layered oxides is demonstrated through Al‐doping strategy. This work presents a comprehensive understanding of the structural and interphasial degradation of ultrahigh‐Ni layered oxide cathodes for developing high‐energy‐density lithium‐ion batteries.  相似文献   

14.
The use of metallic lithium anodes enables higher energy density and higher specific capacity Li‐based batteries. However, it is essential to suppress lithium dendrite growth during electrodeposition. Li‐ion‐conducting ceramics (LICC) can mechanically suppress dendritic growth but are too fragile and also have low Li‐ion conductivity. Here, a simple, versatile, and scalable procedure for fabricating flexible Li‐ion‐conducting composite membranes composed of a single layer of LICC particles firmly embedded in a polymer matrix with their top and bottom surfaces exposed to allow for ionic transport is described. The membranes are thin (<100 μm) and possess high Li‐ion conductance at thicknesses where LICC disks are mechanically unstable. It is demonstrated that these membranes suppress Li dendrite growth even when the shear modulus of the matrix is lower than that of lithium. It is anticipated that these membranes enable the use of metallic lithium anodes in conventional and solid‐state Li‐ion batteries as well as in future Li? S and Li? O2 batteries.  相似文献   

15.
Transition metal sulfides hold promising potentials as Li‐free conversion‐type cathode materials for high energy density lithium metal batteries. However, the practical deployment of these materials is hampered by their poor rate capability and short cycling life. In this work, the authors take the advantage of hollow structure of CuS nanoboxes to accommodate the volume expansion and facilitate the ion diffusion during discharge–charge processes. As a result, the hollow CuS nanoboxes achieve excellent rate performance (≈371 mAh g?1 at 20 C) and ultra‐long cycle life (>1000 cycles). The structure and valence evolution of the CuS nanobox cathode are identified by scanning electron microscopy, transmission electron microscopy, and X‐ray photoelectron spectroscopy. Furthermore, the lithium storage mechanism is revealed by galvanostatic intermittent titration technique and operando Raman spectroscopy for the initial charge–discharge process and the following reversible processes. These results suggest that the hollow CuS nanobox material is a promising candidate as a low‐cost Li‐free cathode material for high‐rate and long‐life lithium metal batteries.  相似文献   

16.
Li‐rich layered materials are considered to be the promising low‐cost cathodes for lithium‐ion batteries but they suffer from poor rate capability despite of efforts toward surface coating or foreign dopings. Here, spinel‐layered Li‐rich Li‐Mn‐Co‐O microspheres are reported as a new high‐rate cathode material for Li‐ion batteries. The synthetic procedure is relatively simple, involving the formation of uniform carbonate precursor under solvothermal conditions and its subsequent transformation to an assembled microsphere that integrates a spinel‐like component with a layered component by a heat treatment. When calcined at 700 °C, the amount of transition metal Mn and Co in the Li‐Mn‐Co‐O microspheres maintained is similar to at 800 °C, while the structures of constituent particles partially transform from 2D to 3D channels. As a consequence, when tested as a cathode for lithium‐ion batteries, the spinel‐layered Li‐rich Li‐Mn‐Co‐O microspheres obtained at 700 °C show a maximum discharge capacity of 185.1 mA h g?1 at a very high current density of 1200 mA g?1 between 2.0 and 4.6 V. Such a capacity is among the highest reported to date at high charge‐discharge rates. Therefore, the present spinel‐layered Li‐rich Li‐Mn‐Co‐O microspheres represent an attractive alternative to high‐rate electrode materials for lithium‐ion batteries.  相似文献   

17.
Hard carbon is the leading candidate anode for commercialization of Na‐ion batteries. Hard carbon has a unique local atomic structure, which is composed of nanodomains of layered rumpled sheets that have short‐range local order resembling graphene within each layer, but complete disorder along the c‐axis between layers. A primary challenge holding back the development of Na‐ion batteries is that a complete understanding of the structure–capacity correlations of Na‐ion storage in hard carbon has remained elusive. This article presents two key discoveries: first, the characteristics of hard carbons structure can be modified systematically by heteroatom doping, and second, that these structural changes greatly affect Na‐ion storage properties, which reveals the mechanisms for Na storage in hard carbon. Specifically, via P or S doping, the interlayer spacing is dilated, which extends the low‐voltage plateau capacity, while increasing the defect concentrations with P or B doping leads to higher sloping sodiation capacity. The combined experimental studies and first principles calculations reveal that it is the Na‐ion‐defect binding that corresponds to the sloping capacity, while the Na intercalation between graphenic layers causes the low‐potential plateau capacity. The understanding suggests a new design principle of hard carbon anode: more reversibly binding defects and dilated turbostratic domains, given that the specific surface area is maintained low.  相似文献   

18.
A new approach to intentionally induce phase transition of Li‐excess layered cathode materials for high‐performance lithium ion batteries is reported. In high contrast to the limited layered‐to‐spinel phase transformation that occurred during in situ electrochemical cycles, a Li‐excess layered Li[Li0.2Mn0.54Ni0.13Co0.13]O2 is completely converted to a Li4Mn5O12‐type spinel product via ex situ ion‐exchanges and a post‐annealing process. Such a layered‐to‐spinel phase conversion is examined using in situ X‐ray diffraction and in situ high‐resolution transmission electron microscopy. It is found that generation of sufficient lithium ion vacancies within the Li‐excess layered oxide plays a critical role for realizing a complete phase transition. The newly formed spinel material exhibits initial discharge capacities of 313.6, 267.2, 204.0, and 126.3 mAh g?1 when cycled at 0.1, 0.5, 1, and 5 C (1 C = 250 mA g?1), respectively, and can retain a specific capacity of 197.5 mAh g?1 at 1 C after 100 electrochemical cycles, demonstrating remarkably improved rate capability and cycling stability in comparison with the original Li‐excess layered cathode materials. This work sheds light on fundamental understanding of phase transitions within Li‐excess layered oxides. It also provides a novel route for tailoring electrochemical performance of Li‐excess layered cathode materials for high‐capacity lithium ion batteries.  相似文献   

19.
Mixed metal sulfides (MMSs) have attracted increased attention as promising electrode materials for electrochemical energy storage and conversion systems including lithium‐ion batteries (LIBs), sodium‐ion batteries (SIBs), hybrid supercapacitors (HSCs), metal–air batteries (MABs), and water splitting. Compared with monometal sulfides, MMSs exhibit greatly enhanced electrochemical performance, which is largely originated from their higher electronic conductivity and richer redox reactions. In this review, recent progresses in the rational design and synthesis of diverse MMS‐based micro/nanostructures with controlled morphologies, sizes, and compositions for LIBs, SIBs, HSCs, MABs, and water splitting are summarized. In particular, nanostructuring, synthesis of nanocomposites with carbonaceous materials and fabrication of 3D MMS‐based electrodes are demonstrated to be three effective approaches for improving the electrochemical performance of MMS‐based electrode materials. Furthermore, some potential challenges as well as prospects are discussed to further advance the development of MMS‐based electrode materials for next‐generation electrochemical energy storage and conversion systems.  相似文献   

20.
Li‐rich layered metal oxides are one type of the most promising cathode materials in lithium‐ion batteries but suffer from severe voltage decay during cycling because of the continuous transition metal (TM) migration into the Li layers. A Li‐rich layered metal oxide Li1.2Ti0.26Ni0.18Co0.18Mn0.18O2 (LTR) is hereby designed, in which some of the Ti4+ cations are intrinsically present in the Li layers. The native Li–Ti cation mixing structure enhances the tolerance for structural distortion and inhibits the migration of the TM ions in the TMO2 slabs during (de)lithiation. Consequently, LTR exhibits a remarkable cycling stability of 97% capacity retention after 182 cycles, and the average discharge potential drops only 90 mV in 100 cycles. In‐depth studies by electron energy loss spectroscopy and aberration‐corrected scanning transmission electron microscopy demonstrate the Li–Ti mixing structure. The charge compensation mechanism is uncovered with X‐ray absorption spectroscopy and explained with the density function theory calculations. These results show the superiority of introducing transition metal ions into the Li layers in reinforcing the structural stability of the Li‐rich layered metal oxides. These findings shed light on a possible path to the development of Li‐rich materials with better potential retention and a longer lifespan.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号