首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lithium ‐ air batteries have become a focus of research on future battery technologies. Technical issues associated with lithium‐air batteries, however, are rather complex. Apart from the sluggish oxygen reaction kinetics which demand efficient oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) catalysts, issues are also inherited from the nature of an open battery system and the use of reactive metal lithium as anode. Lithium‐air batteries, which exchange oxygen directly with ambient air, face more challenges due to the additional oxidative agents of moisture, carbon dioxide, etc. which degrade the metal lithium anode, deteriorating the performance of the batteries. In order to improve the cycling performance one must hold a full picture of lithium‐oxygen electrochemistry in the presence of carbon dioxide and/or moisture and fully understand the fundamentals of chemistry reactions therein. Recent advances in the exploration of the effect of moisture and CO2 contaminants on Li‐O2 batteries are reviewed, and the mechanistic understanding of discharge/charge process in O2 at controlled level of moisture and/or CO2 are illustrated. Prospects for development opportunities of Li‐air batteries, insight into future research directions, and guidelines for the further development of rechargeable Li‐air batteries are also given.  相似文献   

2.
Rational design and massive production of bifunctional catalysts with superior oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) activities are essential for developing metal–air batteries and fuel cells. Herein, controllable large‐scale synthesis of sulfur‐doped CaMnO3 nanotubes is demonstrated via an electrospinning technique followed by calcination and sulfurization treatment. The sulfur doping can not only replace oxygen atoms to increase intrinsic electrical conductivity but also introduce abundant oxygen vacancies to provide enough catalytically active sites, which is further demonstrated by density functional theory calculation. The resulting sulfur‐modified CaMnO3 (CMO/S) exhibits better electrocatalytic activity for ORR and OER in alkaline solution with higher stability performance than the pristine CMO. These results highlight the importance of sulfur treatment as a facile yet effective strategy to improve the ORR and OER catalytic activity of the pristine CaMnO3. As a proof‐of‐concept, a rechargeable Zn–air battery using the bifunctional catalyst exhibits a small charge–discharge voltage polarization, and long cycling life. Furthermore, a solid‐state flexible and rechargeable Zn–air battery gives superior discharge–charge performance and remarkable stability. Therefore, the CMO/S nanotubes might be a promising replacement to the Pt‐based electrocatalysts for metal–air batteries and fuel cells.  相似文献   

3.
Solid‐state Li batteries using Na+ superionic conductor type solid electrolyte attracts wide interest because of its safety and high theoretical energy density. The NASCION type solid electrolyte LAGP (Li1.5Al0.5Ge0.5P3O12) shows favorable conductivity as well as good mechanical strength to prevent Li dendrite penetration. However, the instability of LAGP with Li metal remains a great challenge. In this work, an amorphous Ge thin film is sputtered on an LAGP surface, which can not only suppress the reduction reaction of Ge4+ and Li, but also produces intimate contact between the Li metal and the LAGP solid electrolyte. The symmetric cell with the Ge‐coated LAGP solid electrolyte shows superior stability and cycle performance for 100 cycles at 0.1 mA cm?2. A quasi‐solid‐state Li–air battery has also been assembled to further demonstrate this advantage. A stable cycling performance of 30 cycles in ambient air can be obtained. This work helps to achieve a stable and ionic conducting interface in solid‐state Li batteries.  相似文献   

4.
A promising bifunctional electrocatalyst is reported for air cathodes consisting of Ni3Fe nanoparticles embedded in porous nitrogen‐doped carbon sheets (Ni3Fe/N‐C sheets) by a facile and effective pyrolysis‐based route with sodium chloride (NaCl) crystals as a template. The Ni3Fe/N‐C sheets show excellent catalytic activity, selectivity, and durability toward both the oxygen‐reduction and oxygen‐evolution reactions (ORR and OER). They are shown to provide a superior, low‐cost cathode for a rechargeable Zn‐air battery. At a discharge–charge current density of 10 mA cm?2, the Ni3Fe/N‐C sheets enable a Zn–air battery to cycle steadily up to 420 h with only a small increase in the round‐trip overpotential, outperforming the more costly Pt/C + IrO2 mixture catalyst (160 h). With the simplicity and scalability of the synthetic approach and its remarkable bifunctional electrocatalytic performance, the Ni3Fe/N‐C sheets offer a promising rechargeable air cathode operating at room temperature in an alkaline electrolyte.  相似文献   

5.
(1) Most ferns are restricted to moist and shady habitats, but it is not known whether soil moisture or atmospheric water status are decisive limiting factors, or if both are equally important. (2) Using the rare temperate woodland fern Polystichum braunii, we conducted a three‐factorial climate chamber experiment (soil moisture (SM) × air humidity (RH) × air temperature (T)) to test the hypotheses that: (i) atmospheric water status (RH) exerts a similarly large influence on the fern's biology as soil moisture, and (ii) both a reduction in RH and an increase in air temperature reduce vigour and growth. (3) Nine of 11 morphological, physiological and growth‐related traits were significantly influenced by an increase in RH from 65% to 95%, leading to higher leaf conductance, increased above‐ and belowground productivity, higher fertility, more epidermal trichomes and fewer leaf deformities under high air humidity. In contrast, soil moisture variation (from 66% to 70% in the moist to ca. 42% in the dry treatment) influenced only one trait (specific leaf area), and temperature variation (15 °C versus 19 °C during daytime) only three traits (leaf conductance, root/shoot ratio, specific leaf area); RH was the only factor affecting productivity. (4) This study is the first experimental proof for a soil moisture‐independent air humidity effect on the growth of terrestrial woodland ferns. P. braunii appears to be an air humidity hygrophyte that, whithin the range of realistic environmental conditions set in this study, suffers more from a reduction in RH than in soil moisture. A climate warming‐related increase in summer temperatures, however, seems not to directly threaten this endangered species.  相似文献   

6.
Aqueous Zn‐based batteries are attracting extensive interest because of their economic feasibility and potentially high energy density. However, poor rechargeability of Zn anode in conventional electrolytes resulting from dendrite formation and self‐corrosion hinders their practical implementation. Herein, a Zn molten hydrate composed of inorganic Zn salt and water is demonstrated as an advantageous electrolyte for solving these issues. In this electrolyte, dendrite‐free Zn deposition/dissolution reaction with a high Coulombic efficiency (≈99%) as well as long‐term stability, free from CO2 poisoning are realized. The resultant Zn–air cell exhibits a reversible capacity of 1000 mAh g(catalyst)?1 over 100 cycles at 30 °C. Combined with the intrinsic safety associated with aqueous chemistry and cost benefit of the raw material, the present Zn–air battery makes a strong candidate for large‐scale energy storage.  相似文献   

7.
Stretchable devices need elastic hydrogel electrolyte as an essential component, while most hydrogels will lose their stretchability after being incorporated with strong alkaline solution. This is why highly stretchable zinc–air batteries have never been reported so far. Herein, super‐stretchable, flat‐ (800% stretchable) and fiber‐shaped (500% stretchable) zinc–air batteries are first developed by designing an alkaline‐tolerant dual‐network hydrogel electrolyte. In the dual‐network hydrogel electrolyte, sodium polyacrylate (PANa) chains contribute to the formation of soft domains and the carboxyl groups neutralized by hydroxyls as well as cellulose as potassium hydroxide stabilizer are responsible for vastly enhanced alkaline tolerance. The obtained super‐stretchable, flat zinc–air battery exhibits a high power density of 108.6 mW?cm?2, increasing to 210.5 mW?cm?2 upon being 800% stretched. Similar phenomena are observed for the 500% stretchable fiber‐shaped batteries. The devices can maintain stable power output even after being heavily deformed benefiting from the highly soft, alkaline‐tolerant hydrogel electrolyte developed. A bendable battery‐display system and water proof weavable fiber zinc–air battery are also demonstrated. This work will facilitate the progress of using zinc–air battery powering flexible electronics and smart clothes. Moreover, the developed alkaline‐tolerant super‐stretchable electrolyte can also be applied for many other alkaline electrolyte‐based energy storage/conversion devices.  相似文献   

8.
Herein, a facile, one‐step hydrothermal route to synthesize novel all‐carbon‐based composites composed of B‐doped graphene quantum dots anchored on a graphene hydrogel (GH‐BGQD) is demonstrated. The obtained GH‐BGQD material has a unique 3D architecture with high porosity and large specific surface area, exhibiting abundant catalytic active sites of B‐GQDs as well as enhanced electrolyte mass transport and ion diffusion. Therefore, the prepared GH‐BGQD composites exhibit a superior trifunctional electrocatalytic activity toward the oxygen reduction reaction, oxygen evolution reaction, and hydrogen evolution reaction with excellent long‐term stability and durability comparable to those of commercial Pt/C and Ir/C catalysts. A flexible solid‐state Zn–air battery using a GH‐BGQD air electrode achieves an open‐circuit voltage of 1.40 V, a stable discharge voltage of 1.23 V for 100 h, a specific capacity of 687 mAh g?1, and a peak power density of 112 mW cm?2. Also, a water electrolysis cell using GH‐BGQD electrodes delivers a current density of 10 mA cm?2 at cell voltage of 1.61 V, with remarkable stability during 70 h of operation. Finally, the trifunctional GH‐BGQD catalyst is employed for water electrolysis cell powered by the prepared Zn–air batteries, providing a new strategy for the carbon‐based multifunctional electrocatalysts for electrochemical energy devices.  相似文献   

9.
The future large‐scale deployment of rechargeable zinc–air batteries requires the development of cheap, stable, and efficient bifunctional electrocatalysts for the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER). In this work, a highly efficient bifunctional electrocatalyst is prepared by depositing 3–5 nm NiFe layered double hydroxide (NiFe‐LDH) nanoparticles on Co,N‐codoped carbon nanoframes (Co,N‐CNF). The NiFe‐LDH/Co,N‐CNF electrocatalyst displayed an OER overpotential of 0.312 V at 10 mA cm?2 and an ORR half‐wave potential of 0.790 V. The outstanding performance of the electrocatalyst is attributable to the high electrical conductivity and excellent ORR activity of Co,N‐CNF, together with the strong anchoring of 3–5 nm NiFe‐LDH nanoparticles, which preserves active sites. Inspired by the excellent OER and ORR performance of NiFe‐LDH/Co,N‐CNF, a prototype rechargeable zinc–air battery is developed. The battery exhibited a low discharge–charge voltage gap (1.0 V at 25 mA cm?2) and long‐term cycling durability (over 80 h), and superior overall performance to a counterpart battery constructed using a mixture of IrO2 and Pt/C as the cathode. The strategy developed here can easily be adapted to synthesize other bifunctional CNF‐based hybrid electrodes for ORR and OER, providing a practical route to more efficient rechargeable zinc–air batteries.  相似文献   

10.
Energy storage challenges have triggered growing interest in various battery technologies and electrocatalysis. As a particularly promising variety, the Li–O2 battery with an extremely high energy density is of great significance, offering tremendous opportunities to improve cell performance via understanding catalytic mechanisms and the exploration of new materials. Furthermore, focus on nonaqueous electrolyte‐based Li–O2 batteries has markedly intensified since there could be a higher probability of commercialization, compared to that of solid‐state or aqueous electrolytes. The recent advancements of the nonaqueous Li–O2 battery in terms of fundamental understanding and material challenges, including electrolyte stability, water effect, and noncarbon cathode materials are summarized in this review. Further, the current status of water impact on discharge products, possible mechanisms, and parasitic reactions in nonaqueous electrolytes are reviewed for the first time. The key challenges of noncarbon oxygen electrode materials, such as noble metals and metal oxides‐based cathodes, transition metals, transition metal compounds (carbides, oxides) based cathodes as well as noncarbon supported catalysts are discussed. This review concludes with a perspective on future research directions for nonaqueous Li–O2 batteries.  相似文献   

11.
Despite a recent increase in the attention given to sodium rechargeable battery systems, they should be further advanced in terms of their energy density and reliability to successfully penetrate the rechargeable battery market. Here, a new room temperature ZEBRA‐type Na–CuCl2 rechargeable battery is demonstrated that employs CuCl2 cathode material and nonflammable inorganic liquid electrolyte. The cathode delivers a high energy density of ≈580 Wh kg?1 with superior capacity retention over 1000 cycles as well as a high round‐trip efficiency of ≈97%, which has never been obtained in an organic electrolyte system and high‐temperature ZEBRA‐type battery. These excellent electrochemical performances are mainly attributed to the use of the SO2‐based inorganic electrolyte, which guarantees a reversible conversion reaction between CuCl2 and CuCl with NaCl. It is also demonstrated that the proposed battery chemistry can be extended to other copper halide materials including CuBr2 and CuF2, which also show highly promising battery performances as cathode materials for the Na–Cu halide battery system.  相似文献   

12.
Although the rechargeable lithium–oxygen (Li–O2) batteries have extremely high theoretical specific energy, the practical application of these batteries is still limited by the instability of their carbon‐based air‐electrode, Li metal anode, and electrodes, toward reduced oxygen species. Here a simple one‐step in situ electrochemical precharging strategy is demonstrated to generate thin protective films on both carbon nanotubes (CNTs), air‐electrodes and Li metal anodes simultaneously under an inert atmosphere. Li–O2 cells after such pretreatment demonstrate significantly extended cycle life of 110 and 180 cycles under the capacity‐limited protocol of 1000 mA h g?1 and 500 mA h g?1, respectively, which is far more than those without pretreatment. The thin‐films formed from decomposition of electrolyte during in situ electrochemical precharging processes in an inert environment, can protect both CNTs air‐electrode and Li metal anode prior to conventional Li–O2 discharge/charge cycling, where reactive reduced oxygen species are formed. This work provides a new approach for protection of carbon‐based air‐electrodes and Li metal anodes in practical Li–O2 batteries, and may also be applied to other battery systems.  相似文献   

13.
Despite the exciting achievements made in synthesis of monofunctional electrocatalysts for oxygen reduction reaction (ORR), oxygen evolution reaction (OER), or hydrogen evolution reaction (HER), it is challenging to develop trifunctional electrocatalysts for both ORR/OER/HER. Herein, N, O‐codoped graphene nanorings‐integrated boxes (denoted NOGB) are crafted via high‐temperature pyrolysis and following acid etching of hybrid precursors containing polymers and Prussian blue analogue cubes. The electrochemical results signified that the resulting NOGB‐800 (800 refers to pyrolysis temperature) is highly active for trifunctional electrocatalysis of ORR/OER/HER. This can be reasonably attributed to the advanced nanostructures (i.e., the hierarchically porous nanostructures on the hollow nanorings) and unique chemical compositions (i.e., N, O‐codoped graphene). More attractively, the rechargeable Zn–air battery based on NOGB‐800 displays maximum power density of 111.9 mW cm?2 with small charge–discharge potential of 0.72 V and excellent stability of 30 h, comparable with the Pt/C+Ir/C counterpart. The NOGB‐800 could also be utilized as bifunctional electrocatalysts for overall water splitting to yield current density of 10 mA cm?2 at a voltage of 1.65 V, surpassing most reported electrocatalysts. Therefore, the NOGB‐800 is a promising candidate instead of precious metal–based electrocatalysts for the efficient Zn–air battery and water splitting.  相似文献   

14.
《Bioresource technology》2000,71(2):159-165
The purposes of this study were to evaluate the potential production of nitrous oxide (N2O), which is known as a greenhouse gas, to identify the reaction responsible for it and to examine the effects of oxygen and moisture content on nitrification, denitrification and N2O production. Applying a tracer method using a 15N-isotope into an oxygen controllable reactor with artificial refuse proved that biological denitrification was a main source of released N2O even when the oxygen of the bulk atmosphere was as high as 15%. Calculating the mass balance for nitrogenous compounds showed that only denitrification occurred as the sole microbial process when the bulk oxygen was 0–5%. With increasing oxygen above 5% nitrification also began to occur simultaneously with denitrification. As the bulk space of the refuse became aerobic, the total amount of N2 produced from denitrification decreased but the proportion of N2O in the (N2 + N2O) increased. Denitrification was the main source of released N2O when the moisture content was between 40–60% and oxygen 10%. The amounts of nitrification, denitrification and N2 production increased as the moisture content increased.  相似文献   

15.
Ventilation was studied in the emu, a large flightless bird of mass 40kg, within the range of ambient temperatures from-5 to 45°C. Data for the emu and 21 other species were used to calculate allometric relationships for resting ventilatory parameters in birds (breath frequency=13.5 mass-0.314; tidal volume=20.7 mass1.0). At low ambient temperatures the ventilatory system must accommodate the increased metabolic demand for oxygen. In the emu this was achieved by a combination of increased tidal volume and increased oxygen extraction. Data from emus sitting and standing at-5°C, when metabolism is 1.5x and 2.6x basal metabolic rate, respectively, indicate that at least in the emu an increase in oxygen extraction can be stimulated by low temperature independent of oxygen demand. At higher ambient temperatures ventilation was increased to facilitate respiratory water loss. The emu achieved this by increased respiratory frequency. At moderate heat loads (30–35°C) tidal volume fell. This is usually interpreted as a mechanism whereby respiratory water loss can be increased without increasing parabronchial ventilation. At 45°C tidal volume increased; however, past studies have shown that CO2 washout is minimal under these conditions. The mechanism whereby this is possible is discussed.Abbreviations BMR basal metabolic rate - BTPS body temperature, ambient pressure, saturated - EO 2 oxygen extraction - EWL evaporative water loss - f R ventilation frequency - RH relative humidity - RHL respiratory heat loss - SEM standard error of the mean - SNK student-Newman-Keuls multiple range test - STPD standard temperature and pressure, dry - T a ambient temperatures(s) - T b body temperature(s) - T ex expired air temperature(s) - T rh chamber excurrent air temperature - V J ventilation - VO2 oxygen consumption - V T tidal volume - V/Q air ventilation to blood perfusion ratio  相似文献   

16.
The aerosol survival in air and in nitrogen was measured for Pasteurella tularensis live vaccine strain, disseminated from the wet and dry states. The results showed that most of the loss of viability occurred in less than 2 min of aerosol age, i.e., a rapid initial decay followed by a much slower secondary decay. In nitrogen and air, minimum survival occurred at 50 to 55% relative humidity (RH) for wet dissemination and at 75% RH for dry dissemination. This shift indicated that aerosols produced by wet and dry dissemination were not equivalent and suggested that survival might not be related to bacterial water activity or content. The results showed that rehydration is the key process with regard to survival, but that lysis on rehydration is not a primary death mechanism. The effects of oxygen were complex because it could be either protective or toxic, depending upon other conditions. The protective action of oxygen was through an effect on the spent culture suspending fluid. The latter contained a toxic component, the activity of which is suppressed by oxygen; possibly the component is pumped away during freeze-drying. A toxic effect of oxygen was not found in the presence of spent culture media because the toxicity of the latter masks such an effect. With other bacterial suspending fluids, oxygen was shown to be toxic at low RH. Similar effects with regard to oxygen toxicity were also found with a laboratory strain of P. tularensis. Differences in oxygen toxicity for aerosols generated from the wet and dry states also suggest that bacterial water content and activity do not control aerosol survival.  相似文献   

17.
We report that the ability to absorb water vapor from the air in larvae of the American dog tick, Dermacentor variabilis, changes depending upon moisture conditions where the eggs develop. When development occurs at lower relative humidities, resultant larvae can replenish water stores, maintain water balance, and survive at relative humidities as low as 75-85% RH, a range that agrees with previously published values for the critical equilibrium humidity or CEH. In contrast, exposure to high relative humidity conditions during development elevates the CEH to 93-97% RH. These larvae can survive only at relative humidities that are close to saturation, as 93% RH is a dehydrating atmosphere. For these larvae, absorption at 97% RH can be prevented by blocking the mouthparts with wax, indicating that an upward shift has occurred in the moisture threshold where the active mechanism for water vapor absorption operates. Based on transfer experiments between low and high relative humidities, the CEH of larvae is determined by the relative humidity experienced by the mother rather than the moisture conditions encountered by eggs after they are laid. The fact that no changes in body water content, dehydration tolerance limit and water loss rate were observed implies that adjustments to the CEH conferred by the mother have the adaptive significance of enabling larvae to maintain water balance by limiting the range of hydrating atmospheres.  相似文献   

18.
Efficient bifunctional oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) catalysts are of great importance for rechargeable metal–air batteries. Herein, FeNx/C catalysts are synthesized by pyrolysis of thiourea and agarose containing α‐Fe2O3 nanoplate as Fe precursor, where α‐Fe2O3 nanoplate can prevent the aggregation of carbon sheets to effectively improve the specific surface area during the carbonization process. The FeNx/C‐700‐20 catalyst displays excellent catalytic performance for both ORR and OER activity in alkaline conditions with more positive onset potential (1.1 V vs the reversible hydrogen electrode) and half‐wave potential, higher stability, and stronger methanol tolerance in alkaline solution, which are all superior to that of the commercial Pt/C catalyst. In this study, the detailed analyses demonstrate that the coexistence of Fe‐based species and high content of Fe‐Nx both play an important role for the catalytic activity. Furthermore, FeNx/C‐700‐20 as cathode catalyst in Zn–air battery possesses higher charge–discharge stability and power density compared with that of commercial Pt/C catalyst, displaying great potential in practical implementation of for the rechargeable energy devices.  相似文献   

19.
The notoriously poor stability of perovskite solar cells is a crucial issue restricting commercial applications. Here, a fluorinated perylenediimide (F‐PDI) is first introduced into perovskite film to enhance the device's photovoltaic performance, as well as thermal and moisture stability simultaneously. The conductive F‐PDI molecules filling at grain boundaries (GBs) and surface of perovskite film can passivate defects and promote charge transport through GBs due to the chelation between carbonyl of F‐PDI and noncoordinating lead. Furthermore, an effective multiple hydrophobic structure is formed to protect perovskite film from moisture erosion. As a result, the F‐PDI‐incorporated devices based on MAPbI3 and Cs0.05 (FA0.83MA0.17)0.95 Pb (Br0.17I0.83)3 absorber achieve champion efficiencies of 18.28% and 19.26%, respectively. Over 80% of the initial efficiency is maintained after exposure in air for 30 days with a relative humidity (RH) of 50%. In addition, the strong hydrogen bonding of F···H‐N can immobilize methylamine ion (MA+) and thus enhances the thermal stability of device, remaining nearly 70% of the initial value after thermal treatment (100 °C) for 24 h at 50% RH condition.  相似文献   

20.
Currently, it is still a significant challenge to simultaneously boost various reactions by one electrocatalyst with high activity, excellent durability, as well as low cost. Herein, hybrid trifunctional electrocatalysts are explored via a facile one‐pot strategy toward an efficient oxygen reduction reaction (ORR), oxygen evolution reaction (OER), and hydrogen evolution reaction (HER). The catalysts are rationally designed to be composed by FeCo nanoparticles encapsuled in graphitic carbon films, Co2P nanoparticles, and N,P‐codoped carbon nanofiber networks. The FeCo nanoparticles and the synergistic effect from Co2P and FeCo nanoparticles make the dominant contributions to the ORR, OER, and HER activities, respectively. Their bifunctional activity parameter (?E) for ORR and OER is low to 0.77 V, which is much smaller than those of most nonprecious metal catalysts ever reported, and comparable with state‐of‐the‐art Pt/C and RuO2 (0.78 V). Accordingly, the as‐assembled Zn–air battery exhibits a high power density of 154 mW cm?2 with a low charge–discharge voltage gap of 0.83 V (at 10 mA cm?2) and excellent stability. The as‐constructed overall water‐splitting cell achieves a current density of 10 mA cm?2 (at 1.68 V), which is comparable to the best reported trifunctional catalysts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号