首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Advanced electrode materials with bendability and stretchability are critical for the rapid development of fully flexible/stretchable lithium‐ion batteries. However, the sufficiently stretchable lithium‐ion battery is still underdeveloped that is one of the biggest challenges preventing from realizing fully deformable power sources. Here, a low‐temperature hydrothermal synthesis of a cathode material for stretchable lithium‐ion battery is reported by the in situ growth of LiMn2O4 (LMO) nanocrystals inside 3D carbon nanotube (CNT) film networks. The LMO/CNT film composite has demonstrated the chemical bonding between the LMO active materials and CNT scaffolds, which is the most important characteristic of the stretchable electrodes. When coupled with a wrinkled MnOx /CNT film anode, a binder‐free, all‐manganese‐based stretchable full battery cell is assembled which delivers a high average specific capacity of ≈97 mA h g?1 and stabilizes after over 300 cycles with an enormous strain of 100%. Furthermore, combining with other merits such as low cost, natural abundance, and environmentally friendly, the all‐manganese design is expected to accelerate the practical applications of stretchable lithium‐ion batteries for fully flexible and biomedical electronics.  相似文献   

2.
Printed batteries are an emerging solution for integrated energy storage using low‐cost, high accuracy fabrication techniques. While several printed batteries have been previously shown, few have designed a battery that can be incorporated into an integrated device. Specifically, a fully printed battery with a small active electrode area (<1 cm2) achieving high areal capacities (>10 mAh cm?2) at high current densities (1–10 mA cm?2) has not been demonstrated, which represents the minimum form‐factor and performance requirements for many low‐power device applications. This work addresses these challenges by investigating the scaling limits of a fully printed Zn–Ag2O battery and determining the electrochemical limitations for a mm2‐scale battery. Processed entirely in air, Zn–Ag2O batteries are well suited for integration in typical semiconductor packaging flows compared to lithium‐based chemistries. Printed cells with electrodes as small as 1 mm2 maintain steady operating voltages above (>1.4 V) at high current densities (1–12 mA cm?2) and achieve the highest reported areal capacity for a fully printed battery at 11 mAh cm?2. The findings represent the first demonstration of a small, packaged, fully printed Zn–Ag2O battery with high areal capacities at high current densities, a crucial step toward realizing chip‐scale energy storage for integrated electronic systems.  相似文献   

3.
While stretchable micro‐supercapacitors (MSCs) have been realized, they have suffered from limited areal electrochemical performance, thus greatly restricting their practical electronic application. Herein, a facile strategy of 3D printing and unidirectional freezing of a pseudoplastic nanocomposite gel composed of Ti3C2Tx MXene nanosheets, manganese dioxide nanowire, silver nanowires, and fullerene to construct intrinsically stretchable MSCs with thick and honeycomb‐like porous interdigitated electrodes is introduced. The unique architecture utilizes thick electrodes and a 3D porous conductive scaffold in conjunction with interacting material properties to achieve higher loading of active materials, larger interfacial area, and faster ion transport for significantly improved areal energy and power density. Moreover, the oriented cellular scaffold with fullerene‐induced slippage cell wall structure prompts the printed electrode to withstand large deformations without breaking or exhibiting obvious performance degradation. When imbued with a polymer gel electrolyte, the 3D‐printed MSC achieves an unprecedented areal capacitance of 216.2 mF cm?2 at a scan rate of 10 mV s?1, and remains stable when stretched up to 50% and after 1000 stretch/release cycles. This intrinsically stretchable MSC also exhibits high rate capability and outstanding areal energy density of 19.2 µWh cm?2 and power density of 58.3 mW cm?2, outperforming all reported stretchable MSCs.  相似文献   

4.
The fabrication of fully printable, flexible micro‐supercapacitors (MSCs) with high energy and power density remains a significant technological hurdle. To overcome this grand challenge, the 2D material MXene has garnered significant attention for its application, among others, as a printable electrode material for high performing electrochemical energy storage devices. Herein, a facile and in situ process is proposed to homogeneously anchor hydrous ruthenium oxide (RuO2) nanoparticles on Ti3C2Tx MXene nanosheets. The resulting RuO2@MXene nanosheets can associate with silver nanowires (AgNWs) to serve as a printable electrode with micrometer‐scale resolution for high performing, fully printed MSCs. In this printed nanocomposite electrode, the RuO2 nanoparticles contribute high pseudocapacitance while preventing the MXene nanosheets from restacking, ensuring an effective ion highway for electrolyte ions. The AgNWs coordinate with the RuO2@MXene to guarantee the rheological property of the electrode ink, and provide a highly conductive network architecture for rapid charge transport. As a result, MSCs printed from the nanocomposite inks demonstrate volumetric capacitances of 864.2 F cm?3 at 1 mV s?1, long‐term cycling performance (90% retention after 10 000 cycles), good rate capability (304.0 F cm?3 at 2000 mV s?1), outstanding flexibility, remarkable energy (13.5 mWh cm?3) and power density (48.5 W cm?3).  相似文献   

5.
Lithium‐air batteries with an aqueous alkaline electrolyte promise a much higher practical energy density and capacity than conventional lithium‐ion batteries. However, high cathode overpotentials are some of the main problems during cycling. In our previous work, a catalyst combination of Ag and Co3O4 is found that reduces overpotential significantly, and is highly active and also long‐term stable. In the present investigations, X‐ray diffraction and X‐ray photoelectron spectroscopy are applied to study the structure and composition of the cathode material during oxygen reduction reaction and oxygen evolution reaction. Changes of the oxidation states during cycling are responsible for an enhanced oxygen evolution reaction current density but also for losses due to a lower electronic conductivity of the electrodes. The presence and formation of a mixed oxidation state for silver oxide (AgIAgIIIO2) at high potentials is identified. In contradiction to literature, time dependent X‐ray diffraction measurements evidence that this phase is not stable under dry conditions and progressively decays to Ag2O. Electrode mappings show a highly homogeneous oxidation of the electrodes during cycling and quantitative analysis of the observed phases is carried out by Rietveld analysis. Long‐term material behavior completes the investigations.  相似文献   

6.
The design and fabrication of high‐performance all‐plastic batteries is essentially important to achieve future flexible electronics. A major challenge in this field is the lack of stable and reliable soft organic electrodes with satisfactory performance. Here, a novel all‐plastic‐electrode based Li‐ion battery with a single flexible bi‐functional ladderized heterocyclic poly(quinone), (C6O2S2)n, as both cathode and anode is demonstrated. Benefiting from its unique ladder‐like quinone and dithioether structure, the as‐prepared polymer cathode shows a high energy density of 624 Wh kg?1 (vs lithium anode) and a stable battery life of 1000 cycles. Moreover, the as‐fabricated symmetric full‐battery delivers a large capacity of 249 mAh g?1 (at 20 mA g?1), a good capacity retention of 119 mAh g?1 after 250 cycles (at 1.0 A g?1) and a noteworthy energy density up to 276 Wh kg?1. The superior performance of poly(2,3‐dithiino‐1,4‐benzoquinone)‐based electrode rivals most of the state‐of‐the‐art demonstrations on organic‐based metal‐ion shuttling batteries. The study provides an effective strategy to develop stable bi‐functional electrode materials toward the next‐generation of high performance all‐plastic batteries.  相似文献   

7.
Fast developments and substantial achievements have been shaping the field of wearable electronic devices, resulting in the persistent requirement for stretchable lithium‐ion batteries (LIBs). Despite recent progress in stretchable electrodes, stretching full batteries, including electrodes, separator, and sealing material, remains a great challenge. Here, a simple design concept for stretchable LIBs via a wavy structure at the full battery device scale is reported. All components including the package are capable of being reversibly stretched by folding the entire pouch cell into a wavy shape with polydimethylsiloxane filled in each valley region. In addition, the stretchable, sticky, and porous polyurethane/poly(vinylidene fluoride) membrane is adopted as a separator for the first time, which can maintain intimate contact between electrodes and separator to continuously secure ion pathway under dynamic state. Commercial cathode, anode, and package can be utilized in this rationally designed wavy battery to enable stretchability. The results indicate good electrochemical performances and long‐term stability at repeatable release–stretch cycles. A high areal capacity of 3.6 mA h cm?2 and energy density of up to 172 W h L?1 can be achieved for the wavy battery. The promising results of the cost‐effective wavy battery with high stretchability shed light on the development of stretchable energy storages.  相似文献   

8.
Herein, a two‐species redox reaction of Co(II)/Co(III) and Fe(II)/Fe(III) incorporated in cobalt hexacyanoferrate (CoFe(CN)6) is proposed as a breakthrough to achieve jointly high‐capacity and high‐voltage aqueous Zn‐ion battery. The Zn/CoFe(CN)6 battery provides a highly operational voltage plateau of 1.75 V (vs metallic Zn) and a high capacity of 173.4 mAh g?1 at current density of 0.3 A g?1, taking advantage of the two‐species redox reaction of Co(II)/Co(III) and Fe(II)/Fe(III) couples. Even under extremely fast charge/discharge rate of 6 A g?1, the battery delivers a sufficiently high discharge capacity of 109.5 mAh g?1 with its 3D opened structure framework. This is the highest capacity delivered among all the batteries using Prussian blue analogs (PBAs) cathode up to now. Furthermore, Zn/CoFe(CN)6 battery achieves an excellent cycling performance of 2200 cycles without any capacity decay at coulombic efficiency of nearly 100%. One further step, a sol–gel transition strategy for hydrogel electrolyte is developed to construct high‐performance flexible cable‐type battery. With the strategy, the active materials can adequately contact with electrolyte, resulting in improved electrochemical performance (≈18.73% capacity increase) and mechanical robustness of the solid‐state device. It is believed that this study optimizes electrodes by incorporating multi redox reaction species for high‐voltage and high‐capacity batteries.  相似文献   

9.
Metal phosphides are promising anode candidates for sodium‐ion batteries (SIBs) due to their high specific capacity and low operating potential but suffer from poor cycling stability caused by huge volume expansion and poor solid‐state ion transfer rate. Herein, a new strategy to grow a new class of mesoporous metal phosphide nanoarrays on carbon felt (CF) as binder‐free anodes for SIBs is reported. The resultant integrated electrodes demonstrate excellent cycling life up to 1000 times (>90% retention rate) and high rate capability of 535 mAh g?1 at a current density of 4 A g?1. Detailed characterization reveals that the synergistic effect of unique mesoporous structure for accommodating huge volume expansion during sodiation/desodiation process, ultrasmall primary particle size (≈10 nm) for providing larger electrode/electrolyte contact area and shorter ion diffusion distance, and 3D conductive networks for facilitating the electrochemical reaction, leads to the extraordinary battery performance. Remarkably, a full SIB using the new CoP4/CF anode and a Na3V2(PO4)2F3 cathode delivers an average operating voltage of ≈3.0 V, a reversible capacity of 553 mAh g?1, and very high energy density of ≈280 Wh kg?1 for SIBs. A flexible SIB with outstanding mechanical strength based on this binder‐free new anode is also demonstrated.  相似文献   

10.
A challenge still remains to develop high‐performance and cost‐effective air electrode for Li‐O2 batteries with high capacity, enhanced rate capability and long cycle life (100 times or above) despite recent advances in this field. In this work, a new design of binder‐free air electrode composed of three‐dimensional (3D) graphene (G) and flower‐like δ‐MnO2 (3D‐G‐MnO2) has been proposed. In this design, graphene and δ‐MnO2 grow directly on the skeleton of Ni foam that inherits the interconnected 3D scaffold of Ni foam. Li‐O2 batteries with 3D‐G‐MnO2 electrode can yield a high discharge capacity of 3660 mAh g?1 at 0.083 mA cm?2. The battery can sustain 132 cycles at a capacity of 492 mAh g?1 (1000 mAh gcarbon ?1) with low overpotentials under a high current density of 0.333 mA cm?2. A high average energy density of 1350 Wh Kg?1 is maintained over 110 cycles at this high current density. The excellent catalytic activity of 3D‐G‐MnO2 makes it an attractive air electrode for high‐performance Li‐O2 batteries.  相似文献   

11.
Aqueous zinc batteries are considered as promising alternatives to lithium ion batteries owing to their low cost and high safety. However, the developments of state‐of‐the‐art zinc‐ion batteries (ZIB) and zinc–air batteries (ZAB) are limited by the unsatisfied capacities and poor cycling stabilities, respectively. It is of significance in utilizing the long‐cycle life of ZIB and high capacity of ZAB to exploit advanced energy storage systems. Herein, a bulk composite of graphene oxide and vanadium oxide (V5O12·6H2O) as cathode material for aqueous Zn batteries in a mild electrolyte is employed. The battery performance is demonstrated to arise from a combination of the reversible cations insertion/extraction in vanadium oxide and especially the electrochemical redox reactions on the surface functional groups of graphene oxide (named as pseudo‐Zn–air mechanism). Along with adjusting the hydroxyl content on the surface of graphene oxide, the specific capacity is significantly increased from 342 mAh g?1 to a maximum of 496 mAh g?1 at 100 mA g?1. The surface‐controlled kinetics occurring in the bulk composite ensure a high areal capacity of 10.6 mAh cm?2 at a mass loading of 26.5 mg cm?2, and a capacity retention of 84.7% over 10 000 cycles at a high current density of 10 A g?1.  相似文献   

12.
Stretchable devices need elastic hydrogel electrolyte as an essential component, while most hydrogels will lose their stretchability after being incorporated with strong alkaline solution. This is why highly stretchable zinc–air batteries have never been reported so far. Herein, super‐stretchable, flat‐ (800% stretchable) and fiber‐shaped (500% stretchable) zinc–air batteries are first developed by designing an alkaline‐tolerant dual‐network hydrogel electrolyte. In the dual‐network hydrogel electrolyte, sodium polyacrylate (PANa) chains contribute to the formation of soft domains and the carboxyl groups neutralized by hydroxyls as well as cellulose as potassium hydroxide stabilizer are responsible for vastly enhanced alkaline tolerance. The obtained super‐stretchable, flat zinc–air battery exhibits a high power density of 108.6 mW?cm?2, increasing to 210.5 mW?cm?2 upon being 800% stretched. Similar phenomena are observed for the 500% stretchable fiber‐shaped batteries. The devices can maintain stable power output even after being heavily deformed benefiting from the highly soft, alkaline‐tolerant hydrogel electrolyte developed. A bendable battery‐display system and water proof weavable fiber zinc–air battery are also demonstrated. This work will facilitate the progress of using zinc–air battery powering flexible electronics and smart clothes. Moreover, the developed alkaline‐tolerant super‐stretchable electrolyte can also be applied for many other alkaline electrolyte‐based energy storage/conversion devices.  相似文献   

13.
14.
A rechargeable, stretchable battery composed of a liquid metal alloy (eutectic gallium‐indium; EGaIn) anode, a carbon paste, and MnO2 slurry cathode, an alkaline electrolytic hydrogel, and a soft elastomeric package is presented. The battery can stably cycle within a voltage range of 1.40–1.86 V at 1 mA cm?2 while being subject to 100% tensile strain. This is accomplished through a mechanism that involves reversible stripping and plating of gallium along with MnO2 chemical conversion. Moreover, a technique to increase the contact area between the EGaIn anode and hydrogel interface using CaCl2 additives, which reduces polarization and therefore reduces the effective current density, leading to higher discharge plateaus and lower charge plateaus. Relative to previous attempts at energy storage with liquid metal, the EGaIn‐MnO2 battery presented here shows an exceptional areal specific capacity (≈3.8 mAh cm?2) and robust, stable rechargeability over >100 charging cycles. The battery is also stable under bending, with negligible change in electrochemical properties when bent to a 2 mm radius of curvature. Batteries embedded within a wearable elastomeric sleeve can power a blue light‐emitting diode and strain‐sensing circuit. These demonstrations suggest that stretchable EGaIn‐MnO2 batteries are feasible for applications in wearable energy‐storage electronics.  相似文献   

15.
Fiber‐shaped aqueous rechargeable Zn batteries (FARZBs) show flexibility, good reliability, cost‐effectiveness, high energy/power densities, and high safety that have attracted increasing attention as promising energy storage devices for future wearable applications. However, the development of FARZB is limited by its poor cycling life and inferior charge–discharge performance, mainly suffering from zinc dendrite growth and increasing electrode irreversibility. In this work, dendrite‐free fiber‐shaped Zn//Co3O4 rechargeable batteries with a long cycle life tested in water and air, are obtained via tuning the surface binding energy of Zn on the anode using the zincophilic N,O‐functional carbon fiber, as well as engineering the Co3O4 cathode with a nanowire array structure. The fiber‐shaped Zn//Co3O4 full battery demonstrates remarkable long cycle life in water and air with high energy density, impressive flexibility, and excellent waterproof ability (fully immersed and charged/discharged under water for more than 33 h for 3000 cycles with capacity retention of ≈80%). The reversible electrochemical mechanisms of the FARZBs, without obvious zinc dendrite deposits and structural change of Co3O4 nanowires, are confirmed by a series of characterizations. These results demonstrate that the FARZBs are promising power sources for emerging wearable electronics.  相似文献   

16.
With the emergence of stretchable electronic devices, there is growing interest in the development of deformable power accessories that can power them. To date, various approaches have been reported for replacing rigid components of typical batteries with elastic materials. Little attention, however, has been paid to stretchable separator membranes that can not only prevent internal short circuit but also provide an ionic conducting pathway between electrodes under extreme physical deformation. Herein, a poly(styrene‐b‐butadiene‐b‐styrene) (SBS) block copolymer–based stretchable separator membrane is fabricated by the nonsolvent‐induced phase separation (NIPS). The diversity of mechanical properties and porous structures can be obtained by using different polymer concentrations and tuning the affinity among major components of NIPS. The stretchable separator membrane exhibits a high stretchability of around 270% strain and porous structure having porosity of 61%. Thus, its potential application as a stretchable separator membrane for deformable energy devices is demonstrated by applying to organic/aqueous electrolyte–based rechargeable lithium‐ion batteries. As a result, these batteries manifest good cycle life and stable capacity retention even under a stretching condition of 100%, without compromising the battery's performance.  相似文献   

17.
Highly stretchable self‐powered energy sources are promising options for powering diverse wearable smart electronics. However, commercially existing energy sources are disadvantaged by tensile strain limitations and constrained deformability. Here, 1D thread‐based highly stretchable triboelectric nanogenerators (HS‐TENGs), a crucial step toward overcoming these obstacles, are developed based on a highly stretchable coaxial‐type poly[styrene‐b‐isoprene‐b‐styrene] (SIS) elastomer tube. Carbon conductive ink is injected into the SIS tube as a core 1D electrode that remains almost unaffected even under 250% stretching because of its low Young's modulus. To further facilitate power generation by the HS‐TENG, a composite of barium titanate nanoparticles (BaTiO3 NPs) and polydimethylsiloxane (PDMS) is coated on the initial SIS tube to modulate the dielectric permittivity based on variations in the BaTiO3 NPs volume ratio. The 1D PDMS/BaTiO3 NP composite‐coated SIS and a nylon 6‐coated 2D Ni–Cu conductive fabric are selected as triboelectric bottom and top layers, respectively. Woven HS‐TENGs textiles yield consistent power output under various extreme and harsh conditions, including folded, twisted, and washed states. These experimental findings indicate that the approach may become useful for realizing stretchable multifunctional power sources for various wearable electronics.  相似文献   

18.
Zn‐based batteries are safe, low cost, and environmentally friendly, as well as delivering the highest energy density of all aqueous battery systems. However, the application of Zn‐based batteries is being seriously hindered by the uneven electrostripping/electroplating of Zn on the anodes, which always leads to enlarged polarization (capacity fading) or even cell shorting (low cycling stability). How a porous nano‐CaCO3 coating can guide uniform and position‐selected Zn stripping/plating on the nano‐CaCO3‐layer/Zn foil interfaces is reported here. This Zn‐deposition‐guiding ability is mainly ascribed to the porous nature of the nano‐CaCO3‐layer, since similar functionality (even though relatively inferior) is also found in Zn foils coated with porous acetylene black or nano‐SiO2 layers. Furthermore, the potential application of this strategy is demonstrated in Zn|ZnSO4+MnSO4|CNT/MnO2 rechargeable aqueous batteries. Compared with the ones with bare Zn anodes, the battery with a nano‐CaCO3‐coated Zn anode delivers a 42.7% higher discharge capacity (177 vs 124 mAh g?1 at 1 A g?1) after 1000 cycles.  相似文献   

19.
Herein, it is proposed that poly(methylmethacrylate) (PMMA), a widely‐used thermoplastic in our daily life, can be used as an abundant, stable, and high‐performance anode material for rechargeable lithium‐ion batteries through a novel concept of lithium storage mechanism. The specially‐designed PMMA thin‐film electrode exhibits a high reversible capacity of 343 mA h g?1 at C/25 and maintains a capacity retention of 82.6% of that obtained at C/25 when cycled at 1 C rate. Meanwhile, this pristine PMMA electrode without binder and conductive agents shows a high reversible capacity of 196.8 mA h g?1 after 150 cycles at 0.2 C with a capacity retention of 73.5%. Additionally, PMMA‐based binder is found to enhance both the reversible capacity and rate capability of the graphite electrodes. Hence, this new type of organic electrode material may have a great opportunity to be utilized as the active material or rechargeable binder in flexible or transparent thin‐film batteries and all‐solid batteries. The present work also provides a new way of seeking more proper organic electrode materials which don't contain conjugated structures and atoms with lone pair electrons required in traditional organic electrode materials.  相似文献   

20.
The rechargeable Li–O2 battery has attracted much attention over the past decades owing to its overwhelming advantage in theoretical specific energy density compared to state‐of‐the‐art Li‐ion batteries. Practical application requires non‐aqueous Li–O2 batteries to stably obtain high reversible capacity, which highly depends on a suitable electrolyte system. Up to now, some critical challenges remain in developing desirable non‐aqueous electrolytes for Li–O2 batteries. Herein, we will review the current status and challenges in non‐aqueous liquid electrolytes, ionic liquid electrolytes and solid‐state electrolytes of Li–O2 batteries, as well as the perspectives on these issues and future development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号