首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Facile design of low‐cost and highly active catalysts from earth‐abundant elements is favorable for the industrial application of water splitting. Here, a simple strategy to synthesize an ultrathin molybdenum disulfide/nitrogen‐doped reduced graphene oxide (MoS2/N‐RGO‐180) nanocomposite with the enlarged interlayer spacing of 9.5 Å by a one‐step hydrothermal method is reported. The synergistic effects between the layered MoS2 nanosheets and N‐doped RGO films contribute to the high activity for hydrogen evolution reaction (HER). MoS2/N‐RGO‐180 exhibits the excellent catalytic activity with a low onset potential of ?5 mV versus reversible hydrogen elelctrode (RHE), a small Tafel slope of 41.3 mV dec?1, a high exchange current density of 7.4 × 10?4 A cm?2, and good stability over 5 000 cycles under acidic conditions. The HER performance of MoS2/N‐RGO‐180 nanocomposite is superior to the most reported MoS2‐based catalysts, especially its onset potential and exchange current density. In this work, a novel and simple method to the preparation of low‐cost MoS2‐based electrocatalysts with the extraordinary HER performance is presented.  相似文献   

2.
MoS2 has drawn great attention as a promising Pt‐substituting catalyst for the hydrogen evolution reaction (HER). This work utilizes H2 as the structure directing agent (SDA) to in situ synthesize a range of Co‐MoS2n (n = 0, 0.5, 1.0, 1.4, 2.0) with expanded interlayer spacings (d = 9.2 – 11.1 Å), which significantly boost their HER activities. The Co‐MoS2‐1.4 with an interlayer spacing of 10.3 Å presents an extremely low overpotential of 56 mV (at 10 mA cm?2) and a Tafel slope of 32 mV dec?1, which is superior than most reported MoS2‐based catalysts. Density function theory calculations are used to gain insights that i) the H2 can be dissociatively adsorbed on MoS2 and greatly affect the related surface free energy by regulating the interlayer spacing; ii) the expanded interlayer spacing can significantly decrease the absolute value of ΔGH, thereby leading to greatly promoted HER activity. Additionally, the large amounts of 1T phase (73.9–79.2%) and Co‐Mo‐S active sites (40.9–91.3%) also contribute to the enhanced HER activity of the synthesized samples. Overall, a simple new strategy for in situ synthesis of Co‐MoS2 with an expanded interlayer spacing is proposed, which sheds light on other 2D energy material designs.  相似文献   

3.
Nickel sulfide (Ni3S2) is a promising hydrogen evolution reaction (HER) catalyst by virtue of its metallic electrical conductivity and excellent stability in alkaline medium. However, the reported catalytic activities for Ni3S2 are still relatively low. Herein, an effective strategy to boost the H adsorption capability and HER performance of Ni3S2 through nitrogen (N) doping is demonstrated. N‐doped Ni3S2 nanosheets achieve a fairly low overpotential of 155 mV at 10 mA cm?2 and an excellent exchange current density of 0.42 mA cm?2 in 1.0 m KOH electrolyte. The mass activity of 16.9 mA mg?1 and turnover frequency of 2.4 s?1 obtained at 155 mV are significantly higher than the values reported for other Ni3S2‐based HER catalysts, and comparable to the performance of best HER catalysts in alkaline medium. These experimental data together with theoretical analysis suggest that the outstanding catalytic activity of N‐doped Ni3S2 is due to the enriched active sites with favorable H adsorption free energy. The activity in the Ni3S2 is highly correlated with the coordination number of the surface S atoms and the charge depletion of neighbor Ni atoms. These new findings provide important guidance for future experimental design and synthesis of optimal HER catalysts.  相似文献   

4.
A novel hybrid of small core@shell structured CoSx@Cu2MoS4 uniformly hybridizing with a molybdenum dichalcogenide/N,S‐codoped graphene hetero‐network (CoSx@Cu2MoS4‐MoS2/NSG) is prepared by a facile route. It shows excellent performance toward the oxygen reduction reaction (ORR), oxygen evolution reaction (OER), and hydrogen evolution reaction (HER) in alkaline medium. The hybrid exhibits rapid kinetics for ORR with high electron transfer number of ≈3.97 and exciting durability superior to commercial Pt/C. It also demonstrates great potential with remarkable stability for HER and OER, requiring low overpotential of 118.1 and 351.4 mV, respectively, to reach a current density of 10 mA cm?2. An electrolyzer based on CoSx@Cu2MoS4‐MoS2/NSG produces low cell voltage of 1.60 V and long‐term stability, surpassing a device of Pt/C + RuO2/C. In addition, a Zn‐air battery using cathodic CoSx@Cu2MoS4‐MoS2/NSG catalyst delivers a high cell voltage of ≈1.44 V and a power density of 40 mW cm?2 at 58 mA cm?2, better than the state‐of‐the‐art Pt/C catalyst. These achievements are due to the rational combination of highly active core@shell CoSx@Cu2MoS4 with large‐area and high‐porosity MoS2/NSG to produce unique physicochemical properties with multi‐integrated active centers and synergistic effects. The outperformances of such catalyst suggest an advanced candidate for multielectrocatalysis applications in metal‐air batteries and hydrogen production.  相似文献   

5.
Electrochemical CO2 reduction (CO2RR) is a promising technology to produce value‐added fuels and weaken the greenhouse effect. Plenty of efforts are devoted to exploring high‐efficiency electrocatalysts to tackle the issues that show poor intrinsic activity, low selectivity for target products, and short‐lived durability. Herein, density functional theory calculations are firstly utilized to demonstrate guidelines for design principles of electrocatalyst, maximum exposure of catalytic active sites for MoS2 edges, and electron transfer from N‐doped carbon (NC) to MoS2 edges. Based on the guidelines, a hierarchical hollow electrocatalyst comprised of edge‐exposed 2H MoS2 hybridized with NC for CO2RR is constructed. In situ atomic‐scale observation for catalyst growth is performed by using a specialized Si/SiNx nanochip at a continuous temperature‐rise period, which reveals the growth mechanism. Abundant exposed edges of MoS2 provide a large quantity of active centers, which leads to a low onset potential of ≈40 mV and a remarkable CO production rate of 34.31 mA cm?2 with 92.68% of Faradaic efficiency at an overpotential of 590 mV. The long‐term stability shows negligible degradation for more than 24 h. This work provides fascinating insights into the construction of catalysts for efficient CO2RR.  相似文献   

6.
Oxygen vacancies are demonstrated to be beneficial to various electrocatalytic reactions. However, integrating oxygen vacancies into an amorphous catalyst with a large specific surface area, and investigating its effect on the oxygen evolution reaction remains a great challenge. Herein, oxygen vacancies are introduced into an amorphous N, P, and F tri‐doped CoFe2O4 using ionic liquid as a dopant. Simultaneously, ultrafine MoS2 nanoclusters are anchored onto its surface to increase the specific surface area. The vacancy‐rich MoS2/NPF‐CoFe2O4 exhibits an overpotential of 250 mV and a small Tafel slope of 41 mV dec?1, which is the best spinel‐based oxygen evolution reaction (OER) electrocatalysts so far. The excellent performance is attributed to massive oxygen vacancies, amorphous structure, large surface area, and synergistic coupling effects among active species. Density‐functional theory calculations reveal that the electronic structure of the catalyst can be modulated in the presence of heteroatoms and MoS2 nanoclusters, and then the energy barriers of intermediates are decreased as well, which enhances the OER performance. This design not only provides a simple strategy to construct amorphous structures with abundant oxygen vacancies using ionic liquid‐dopants, but also presents an in‐depth insight into the OER mechanism in alkaline solution.  相似文献   

7.
Efficient and selective earth‐abundant catalysts are highly desirable to drive the electrochemical conversion of CO2 into value‐added chemicals. In this work, a low‐cost Sn modified N‐doped carbon nanofiber hybrid catalyst is developed for switchable CO2 electroreduction in aqueous medium via a straightforward electrospinning technique coupled with a pyrolysis process. The electrocatalytic performance can be tuned by the structure of Sn species on the N‐doped carbon nanofibers. Sn nanoparticles drive efficient formate formation with a high current density of 11 mA cm?2 and a faradaic efficiency of 62% at a moderate overpotential of 690 mV. Atomically dispersed Sn species promote conversion of CO2 to CO with a high faradaic efficiency of 91% at a low overpotential of 490 mV. The interaction between Sn species and pyridinic‐N may play an important role in tuning the catalytic activity and selectivity of these two materials.  相似文献   

8.
Anodically electrodeposited amorphous molybdenum sulfide (AE‐MoSx) has attracted significant attention as a non‐noble metal electrocatalyst for its high activity toward the hydrogen evolution reaction (HER). The [Mo3S13]2? polymer‐based structure confers a high density of exposed sulfur moieties, widely regarded as the HER active sites. However, their intrinsic complexity conceals full understanding of their exact role in HER catalysis, hampering their full potential for water splitting applications. In this report, a unifying approach is adopted accounting for modifications in the inherent electrochemistry (EC), HER mechanism, and surface species to maximize the AE‐MoSx electroactivity over a broad pH region (0–10). Dramatic enhancements in HER performance by selective electrochemical cycling within reductive (overpotential shift, ηHER ≈ ?350 mV) and electro‐oxidative windows (ηHER ≈ ?290 mV) are accompanied by highly stable performance in mildly acidic electrolytes. Joint analysis of X‐ray photoelectron spectroscopy, Raman, and EC experiments corroborate the key role of bridging and terminal S ligands as active site generators at low pH, and reveal molybdenum oxysulfides (Mo5+OxSy) to be the most active HER moiety in AE‐MoSx in mildly acidic‐to‐neutral environments. These findings will be extremely beneficial for future tailoring of MoSx materials and their implementation in commercial electrolyzer technologies.  相似文献   

9.
MoS2 has emerged as a promising alternative electrocatalyst for the hydrogen evolution reaction (HER) due to high intrinsic per‐site activity on its edge sites and S‐vacancies. However, a significant challenge is the limited density of such sites. Reducing the size and layer number of MoS2 and vertically aligning them would be an effective way to enrich and expose such sites for HER. Herein, a facile self‐limited on‐site conversion strategy for synthesizing monolayer MoS2 in a couple of nanometers which are highly dispersed and vertically aligned on 3D porous carbon sheets is reported. It is discovered that the preformation of well‐dispersed MoO3 nanodots in 1–2 nm as limited source is the key for the fabrication of such an ultrasmall MoS2 monolayer. As indicated by X‐ray photoelectron spectroscopy and electron spin resonance data, these ultrasmall MoS2 monolayers are rich in accessible S‐edge sites and vacancies and the smaller MoS2 monolayers the more such sites they have, leading to enhanced electrocatalytic activity with a low overpotential of 126 mV at 10 mA cm?2 and 140 mV at 100 mA mg?1 for HER. This state‐of‐the‐art performance for MoS2 electrocatalysts enables the present strategy as a new avenue for exploring well‐dispersed ultrasmall nanomaterials as efficient catalysts.  相似文献   

10.
2D transition metal‐dichalcogenides are emerging as efficient and cost‐effective electrocatalysts for the hydrogen evolution reaction (HER). However, only the edge sites of their trigonal prismatic phase show HER‐electrocatalytic properties, while the basal plane, which is absent of defective/unsaturated sites, is inactive. Herein, the authors tackle the key challenge of increasing the number of electrocatalytic sites by designing and engineering heterostructures composed of single‐/few‐layer MoSe2 flakes and carbon nanomaterials (graphene or single‐wall carbon nanotubes) produced by solution processing. The electrochemical coupling between the materials that comprise the heterostructure effectively enhances the HER‐electrocatalytic activity of the native MoSe2 flakes. The optimization of the mass loading of MoSe2 flakes and their electrode assembly via monolithic heterostructure stacking provides a cathodic current density of 10 mA cm?2 at overpotential of 100 mV, a Tafel slope of 63 mV dec?1, and an exchange current density (j0) of 0.203 µA cm?2. In addition, thermal and chemical treatments are exploited to texturize the basal planes of the MoSe2 flakes (through Se‐vacancies creation) and to achieve in situ semiconducting‐to‐metallic phase conversion, respectively, thus they activate new HER‐electrocatalytic sites. The as‐engineered electrodes show a 4.8‐fold enhancement of j0 and a decrease in the Tafel slope to 54 mV dec?1.  相似文献   

11.
Searching for highly efficient and durable electrocatalysts for the hydrogen evolution reaction (HER) that function effectively at all pHs is of great interest to the scientific community, however it is still a grand challenge, because the HER kinetics of Pt in alkaline solutions are approximately two to three orders of magnitude lower than that in acidic solution. Herein, a new class of wrinkled, ultrathin Rh2P nanosheets for enhancing HER catalysis at all pHs is reported. They exhibit a small overpotential of 18.3 mV at 10 mA cm?2, low Tafel slope of 61.5 mV dec?1, and good durability in alkaline media, much better than the commercial Pt/C catalyst. Density functional theory calculations reveal that the active open‐shell effect from the P‐3p band not only promotes Rh‐4d for increased proton–electron charge exchange but also provides excellent p–p overlapping to locate the O‐related species as distributary center, which can benefit the HER process in alkaline media. It is also demonstrated that the present wrinkled, ultrathin Rh2P nanosheets are highly efficient and durable electrocatalysts toward HER in both acid and neutral electrolytes. The present work opens a new material design for ultrathin 2D metal phosphide nanostructures for the purpose of boosting HER performance at all pHs.  相似文献   

12.
Construction of well‐defined metal–organic framework precursor is vital to derive highly efficient transition metal–carbon‐based electrocatalyst for hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) in water splitting. Herein, a novel strategy involving an in situ transformation of ultrathin cobalt layered double hydroxide into 2D cobalt zeolitic imidazolate framework (ZIF‐67) nanosheets grafted with 3D ZIF‐67 polyhedra supported on the surface of carbon cloth (2D/3D ZIF‐67@CC) precursor is proposed. After a low‐temperature pyrolysis, this precursor can be further converted into hybrid composites composed of ultrafine cobalt nanoparticles embedded within 2D N‐doped carbon nanosheets and 3D N‐doped hollow carbon polyhedra (Co@N‐CS/N‐HCP@CC). Experimental and density functional theory calculations results indicate that such composites have the advantages of a large number of accessible active sites, accelerated charge/mass transfer ability, the synergistic effect of components as well as an optimal water adsorption energy change. As a result, the obtained Co@N‐CS/N‐HCP@CC catalyst requires overpotentials of only 66 and 248 mV to reach a current density of 10 mA cm?2 for HER and OER in 1.0 m KOH, respectively. Remarkably, it enables an alkali‐electrolyzer with a current density of 10 mA cm?2 at a low cell voltage of 1.545 V, superior to that of the IrO2@CC||Pt/C@CC couple (1.592 V).  相似文献   

13.
The most efficient electrocatalyst for the hydrogen evolution reaction (HER) is a Pt‐based catalyst, but its high cost and nonperfect efficiency hinder wide‐ranging industrial/technological applications. Here, an electrocatalyst of both ruthenium (Ru) single atoms (SAs) and N‐doped‐graphitic(GN)‐shell‐covered nitrided‐Ru nanoparticles (NPs) (having a Ru‐Nx shell) embedded on melamine‐derived GN matrix { 1 : [Ru(SA)+Ru(NP)@RuNx@GN]/GN}, which exhibits superior HER activity in both acidic and basic media, is presented. In 0.5 m H2SO4/1 m KOH solutions, 1 shows diminutive “negative overpotentials” (?η = |η| = 10/7 mV at 10 mA cm?2, lowest ever) and high exchange current densities (4.70/1.96 mA cm?2). The remarkable HER performance is attributed to the near‐zero free energies for hydrogen adsorption/desorption on Ru(SAs) and the increased conductivity of melamine‐derived GN sheets by the presence of nitrided‐Ru(NPs). The nitridation process forming nitrided‐Ru(NPs), which are imperfectly covered by a GN shell, allows superb long‐term operation durability. The catalyst splits water into molecular oxygen and hydrogen at 1.50/1.40 V (in 0.1 m HClO4/1 m KOH), demonstrating its potential as a ready‐to‐use, highly effective energy device for industrial applications.  相似文献   

14.
Searching for highly efficient and cost‐effective electrocatalysts toward the hydrogen evolution reaction (HER) in alkaline electrolyte is highly desirable for the development of alkaline water splitting, but still remains a significant challenge. Herein, the rational design of Cr‐doped Co4N nanorod arrays grown on carbon cloth (Cr–Co4N/CC) that can efficiently catalyze the HER in alkaline media is reported. It displays outstanding performance, with the exceptionally small overpotential of 21 mV to obtain the current density of 10 mA cm?2 and good stability in 1.0 m KOH, which is even better than the commercial Pt/C electrocatalyst, and much lower than most of the reported transition metal nitride‐based and other non‐noble metal‐based electrocatalysts toward the alkaline HER. Density functional theory (DFT) calculations and experimental results reveal that the Cr atoms not only act as oxophilic sites for boosting water adsorption and dissociation, but also modulate the electronic structure of Co4N to endow optimized hydrogen binding abilities on Co atoms, thereby leading to accelerating both the alkaline Volmer and Heyrovsky reaction kinetics. In addition, this strategy can be extended to other metals (such as Mo, Mn, and Fe) doped Co4N electrocatalysts, thus may open up a new avenue for the rational design of highly efficient transition metal nitride‐based HER catalysts and beyond.  相似文献   

15.
The development of efficient hydrogen evolution reaction electrocatalysts is critical to the realization of clean hydrogen fuel production, while the sluggish kinetics of the Volmer‐step substantially restricts the catalyst performances in alkali electrolyzers, even for noble metal catalysts such as Pt. Here, a Pt‐decorated Ni3N nanosheet electrocatalyst is developed to achieve a top performance of hydrogen evolution in alkaline conditions. Possessing a high metallic conductivity and an atomic‐thin semiconducting hydroxide surface, the Ni3N nanosheets serve as not only an efficient electron pathway without the hindrance of Schottky barriers, but also provide abundant active sites for water dissociation and generation of hydrogen intermediates, which are further adsorbed on the Pt surface to recombine to H2. The Pt‐decorated Ni3N nanosheet catalyst exhibits a hydrogen evolution current density of 200 mA cm?2 at an overpotential of 160 mV versus reversible hydrogen electrode, a Tafel slope of ≈36.5 mV dec?1, and excellent stability of 82.5% current retention after 24 h of operation. Moreover, a hybrid cell consisting of a Pt‐decorated Ni3N nanosheet cathode and a Li‐metal anode is assembled to achieve simultaneous hydrogen evolution and electricity generation, exhibiting >60 h long‐term hydrogen evolution reaction stability and an output voltage ranging from 1.3 to 2.2 V.  相似文献   

16.
Covalent organic frameworks (COFs) are crystalline organic polymers with tunable structures. Here, a COF is prepared using building units with highly flexible tetrahedral sp3 nitrogens. This flexibility gives rise to structural changes which generate mesopores capable of confining very small (<2 nm sized) non‐noble‐metal‐based nanoparticles (NPs). This nanocomposite shows exceptional activity toward the oxygen‐evolution reaction from alkaline water with an overpotential of 258 mV at a current density of 10 mA cm?2. The overpotential observed in the COF‐nanoparticle system is the best in class, and is close to the current record of ≈200 mV for any noble‐metal‐free electrocatalytic water splitting system—the Fe–Co–Ni metal‐oxide‐film system. Also, it possesses outstanding kinetics (Tafel slope of 38.9 mV dec?1) for the reaction. The COF is able to stabilize such small‐sized NP in the absence of any capping agent because of the COF–Ni(OH)2 interactions arising from the N‐rich backbone of the COF. Density‐functional‐theory modeling of the interaction between the hexagonal Ni(OH)2 nanosheets and the COF shows that in the most favorable configuration the Ni(OH)2 nanosheets are sandwiched between the sp3 nitrogens of the adjacent COF layers and this can be crucial to maximizing their synergistic interactions.  相似文献   

17.
As a cost‐effective catalyst for the oxygen evolution reaction (OER), the potential use of FeOOH is hindered by its intrinsic poor electron conductivity. Here, the significant enhancement of OER activity and long‐term stability of electrodeposited FeOOH on zeolitic imidazolate framework‐derived N‐doped porous carbons (NPCs) are reported. In alkaline media, FeOOH/NPC supported on nickel foam as a 3D electrode delivers a current density of 100 mA cm?2 at a small overpotential of 230 mV and exhibits a low Tafel slope of 33.8 mV dec?1 as well as excellent durability, making it one of the most active OER catalysts. Such high performance is attributed to a combined effect of the excellent electron conductivity of NPC and the synergy between FeOOH and NiO derived from Ni substrate.  相似文献   

18.
The low hydrogen adsorption free energy and strong acid/alkaline resistance of layered MoS2 render it an excellent pH‐universal electrocatalyst for hydrogen evolution reaction (HER). However, the catalytic activity is dominantly suppressed by its limited active‐edge‐site density. Herein, a new strategy is reported for making a class of strongly coupled MoS2 nanosheet–carbon macroporous hybrid catalysts with engineered unsaturated sulfur edges for boosting HER catalysis by controlling the precursor decomposition and subsequent sodiation/desodiation. Both surface chemical state analysis and first‐principles calculations verify that the resultant catalysts exhibit a desirable valence‐electron state with high exposure of unsaturated sulfur edges and an optimized hydrogen adsorption free energy, significantly improving the intrinsic HER catalytic activity. Such an electrocatalyst exhibits superior and stable catalytic activity toward HER with small overpotentials of 136 mV in 0.5 m H2SO4 and 155 mV in 1 m KOH at 10 mA cm?2, which is the best report for MoS2–C hybrid electrocatalysts to date. This work paves a new avenue to improve the intrinsic catalytic activity of 2D materials for hydrogen generation.  相似文献   

19.
Earth‐abundant amorphous nanomaterials with rich structural defects are promising alternative catalysts to noble metals for an efficient electrochemical oxygen evolution reaction; however, their inferior electrical conductivity and poor morphological control during synthesis hamper the full realization of their potency in electrocatalysis. Herein, a rapid surface‐guided synthetic approach is proposed to introduce amorphous and mixed‐metal oxyhydroxide overlayers on ultrathin Ni‐doped MnO2 (Ni? MnO2) nanosheet arrays via a galvanic replacement mechanism. This method results in a monolithic 3D porous catalyst with a small overpotential of only 232 mV to achieve a current density of 10 mA cm?2 in 1 m KOH, which is much lower than the corresponding value of 307 mV for the Ni? MnO2 reference sample. Detailed structural and electrochemical characterization reveal that the unique Ni? MnO2 ultrathin nanosheet arrays do not only provide a large surface area to guide the formation of active amorphous catalyst layers but also ensure the effective charge transport owing to their high electron conductivity, collectively contributing to the greatly improved catalyst activity. It is envisioned that this highly operable surface‐guide synthetic strategy may open up new avenues for the design and fabrication of novel 3D nanoarchitectures integrated with functional amorphous materials for broadened ranges of applications.  相似文献   

20.
Until now, many works have shown that the hydrogen evolution reaction (HER) performance can be improved by anion or cation substitution into the crystal lattice of pyrite‐structure materials. However, the synergistic effects of anion–cation double substitution for overall enhancement of the catalytic activity remains questionable. Here, the simultaneous incorporation of vanadium and phosphorus into the CoS2 moiety for preparing 3D mesoporous cubic pyrite‐metal Co1‐xVxSP is presented. It is demonstrated that the higher catalytic activity of CoS2 after V incorporation can be primarily attributed to abundance active sites, whereas P substitution is responsible for improving HER kinetics and intrinsic catalyst. Interestingly, due to the synergistic effect of P–V double substitution, the 3D Co1‐xVxSP shows superior electrocatalysis toward the HER with a very small overpotential of 55 mV at 10 mA cm?2, a small Tafel slope of 50 mV dec?1, and a high turnover frequency of 0.45 H2 s?1 at 10 mA cm?2, which is very close to commercial 20% Pt/C. Density functional theory calculation reveals that the superior catalytic activity of the 3D Co1‐xVxSP is contributed by the reduced kinetic energy barrier of rate‐determining HER step as well as the promotion of the desorption H2 gas process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号