共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Unity Convoluted Design of Solid Li‐Ion Battery and Triboelectric Nanogenerator for Self‐Powered Wearable Electronics 下载免费PDF全文
Wearable electronics suffer from severe power shortage due to limited working time of Li‐ion batteries, and there is a desperate need to build a hybrid device including energy scavenging and storing units. However, previous attempts to integrate the two units are mainly based on simple external connections and assembly, so that maintaining small volume and low manufacturing cost becomes increasingly challenging. Here a convoluted power device is presented by hybridizing internally a solid Li‐ion battery (SLB) and a triboelectric nanogenerator (TENG), so that the two units are one inseparable entity. The fabricated device acts as a TENG that can deliver a peak output power of 7.4 mW under a loading resistance of 7 MΩ, while the device also acts as an SLB to store the obtained electric energy. The device can be mounted on a human shoe to sustainably operate a green light‐emitting diode, thus demonstrating potential for self‐powered wearable electronics. 相似文献
3.
Peng‐Yi Tang Li‐Juan Han Franziska Simone Hegner Paul Paciok Martí Biset‐Peir Hong‐Chu Du Xian‐Kui Wei Lei Jin Hai‐Bing Xie Qin Shi Teresa Andreu Mnica Lira‐Cantú Marc Heggen Rafal E. Dunin‐Borkowski Núria Lpez Jos Ramn Galn‐Mascars Joan Ramon Morante Jordi Arbiol 《Liver Transplantation》2019,9(34)
State‐of‐the‐art water‐oxidation catalysts (WOCs) in acidic electrolytes usually contain expensive noble metals such as ruthenium and iridium. However, they too expensive to be implemented broadly in semiconductor photoanodes for photoelectrochemical (PEC) water splitting devices. Here, an Earth‐abundant CoFe Prussian blue analogue (CoFe‐PBA) is incorporated with core–shell Fe2O3/Fe2TiO5 type II heterojunction nanowires as composite photoanodes for PEC water splitting. Those deliver a high photocurrent of 1.25 mA cm?2 at 1.23 V versus reversible reference electrode in acidic electrolytes (pH = 1). The enhancement arises from the synergic behavior between the successive decoration of the hematite surface with nanolayers of Fe2TiO5 and then, CoFe‐PBA. The underlying physical mechanism of performance enhancement through formation of the Fe2O3/Fe2TiO5/CoFe‐PBA heterostructure reveals that the surface states’ electronic levels of hematite are modified such that an interfacial charge transfer becomes kinetically favorable. These findings open new pathways for the future design of cheap and efficient hematite‐based photoanodes in acidic electrolytes. 相似文献
4.
To meet future needs for clean and sustainable energy, tremendous progress has been achieved in development for scavenging wind energy. The most classical approach is to use the electromagnetic effect based wind turbine with a diameter of larger than 50 m and a weight of larger than 50 ton, and each of them could cost more than $0.5 M, which can only be installed in remote areas. Alternatively, triboelectric nanogenerators based on coupling of contact‐electrification and electrostatic induction effects have been utilized to scavenge wind energy, which takes the advantages of high voltage, low cost, and small size. Here, the development of a wind‐driven triboelectric nanogenerator by focusing on triboelectric materials optimization, structure improvement, and hybridization with other types of energy harvesting techniques is reviewed. Moreover, the major applications are summarized and the challenges that are needed to be addressed and development direction for scavenging wind energy in future are highlighted. 相似文献
5.
New Insights into Defect‐Mediated Heterostructures for Photoelectrochemical Water Splitting 下载免费PDF全文
Xiaoqiang An Tong Li Bo Wen Junwang Tang Ziyu Hu Li‐Min Liu Jiuhui Qu C. P. Huang Huijuan Liu 《Liver Transplantation》2016,6(8)
Understanding the interfacial electronic structures of heterojunctions, a challenging undertaking, is extremely important to the design of photoelectrodes for efficient water splitting. The heterostructured interfaces in terms of crystal defects at the atomic‐level exemplified by TiO2/BiVO4 are studied. Results from both experimental observations and theoretical calculations clearly confirm the spontaneous formation of defective interfaces in the heterostructures. TiO2/BiVO4 junction with engineered interfacial defects can efficiently increase the carrier density and extend the lifetime of electrons. The inherent phenomenon of defective electronic structures in different heterostructures creates a significant impact on their photoelectrochemical performance. The synergetic effect between defect‐mediated mechanism and organic quantum dots sensitization yields significantly increased photoconversion efficiency, which is even superior to that of common metal sulfide sensitized ones. This result demonstrates an approach worthy for the design and fabrication of defect‐mediated heterostructures for water splitting, without utilizing harmful metal sulfides. Moreover, new insights into the influence of intrinsic defects on the interfacial charge transfer process between two different semiconductors for energy‐related applications have also been provided. 相似文献
6.
Enhancing Mo:BiVO4 Solar Water Splitting with Patterned Au Nanospheres by Plasmon‐Induced Energy Transfer 下载免费PDF全文
Jung Kyu Kim Xinjian Shi Myung Jin Jeong Joonsuk Park Hyun Soo Han Suk Hyun Kim Yu Guo Tony F. Heinz Shanhui Fan Chang‐Lyoul Lee Jong Hyeok Park Xiaolin Zheng 《Liver Transplantation》2018,8(5)
Plasmonic metal nanostructures have been extensively investigated to improve the performance of metal oxide photoanodes for photoelectrochemical (PEC) solar water splitting cells. Most of these studies have focused on the effects of those metal nanostructures on enhancing light absorption and enabling direct energy transfer via hot electrons. However, several recent studies have shown that plasmonic metal nanostructures can improve the PEC performance of metal oxide photoanodes via another mechanism known as plasmon‐induced resonant energy transfer (PIRET). However, this PIRET effect has not yet been tested for the molybdenum‐doped bismuth vanadium oxide (Mo:BiVO4), regarded as one of the best metal oxide photoanode candidates. Here, this study constructs a hybrid Au nanosphere/Mo:BiVO4 photoanode interwoven in a hexagonal pattern to investigate the PIRET effect on the PEC performance of Mo:BiVO4. This study finds that the Au nanosphere array not only increases light absorption of the photoanode as expected, but also improves both its charge transport and charge transfer efficiencies via PIRET, as confirmed by time‐correlated single photon counting and transient absorption studies. As a result, incorporating the Au nanosphere array increases the photocurrent density of Mo:BiVO4 at 1.23 V versus RHE by ≈2.2‐fold (2.83 mA cm?2). 相似文献
7.
Constructing a AZO/TiO2 Core/Shell Nanocone Array with Uniformly Dispersed Au NPs for Enhancing Photoelectrochemical Water Splitting 下载免费PDF全文
Yan Mi Liaoyong Wen Rui Xu Zhijie Wang Dawei Cao Yaoguo Fang Yong Lei 《Liver Transplantation》2016,6(1)
Constructing core/shell nanostructures with optimal structure and composition could maximize the solar light utilization. Here, using an Al nanocone array as a substrate, a well‐defined regular array of AZO/TiO2 core/shell nanocones with uniformly dispersed Au nanoparticles (AZO/TiO2/Au NCA) is successfully realized through three sequential steps of atomic layer deposition, physical vapor deposition, and annealing processes. By tuning the structural and compositional parameters, the advantages of light trapping and short carrier diffusion from the core/shell nanocone array, as well as the surface plasmon resonance and catalytic effects from the Au nanoparticles can be maximally utilized. Accordingly, a remarkable photoelectrochemical (PEC) performance can be acquired and the photocurrent density of the AZO/TiO2/Au NCA electrode reaches up to 1.1 mA cm?2 at 1.23 V, versus reversible hydrogen electrode (RHE) under simulated sunlight illumination, which is five times that of a flat AZO/TiO2 electrode (0.22 mA cm?2). Moreover, the photoconversion of the AZO/TiO2/Au NCA electrode approaches 0.73% at 0.21 V versus RHE, which is one of the highest values with the lowest applied bias ever reported in Au/TiO2 PEC composites. These results demonstrate a feasible route toward the scalable fabrication of well‐modulated core/shell nanostructures and can be easily applied to other metal/semiconductor composites for high‐performance PEC. 相似文献
8.
Yi Xi Hengyu Guo Yunlong Zi Xiaogan Li Jie Wang Jianan Deng Shengming Li Chenguo Hu Xia Cao Zhong Lin Wang 《Liver Transplantation》2017,7(12)
Triboelectric nanogenerator (TENG) has been considered to be a more effective technology to harvest various types of mechanic vibration energies such as wind energy, water energy in the blue energy, and so on. Considering the vast energy from the blue oceans, harvesting of the water energy has attracted huge attention. There are two major types of “mechanical” water energy, water wave energy in random direction and water flow kinetic energy. However, although the most reported TENG can be used to efficiently harvest one type of water energy, to simultaneously collect two or more types of such energy still remains challenging. In this work, two different freestanding, multifunctional TENGs are successfully developed that can be used to harvest three types of energies including water waves, air flowing, and water flowing. These two new TENGs designed in accordance with the same freestanding model yield the output voltages of 490 and ≈100 V with short circuit currents of 24 and 2.7 µA, respectively, when operated at a rotation frequency of 200 rpm and the movement frequency of 3 Hz. Moreover, the developed multifunctional TENG can also be explored as a self‐powered speed sensor of wind by correlating the short‐circuit current with the wind speed. 相似文献
9.
Band Edge Engineering of Oxide Photoanodes for Photoelectrochemical Water Splitting: Integration of Subsurface Dipoles with Atomic‐Scale Control 下载免费PDF全文
Yasuyuki Hikita Kazunori Nishio Linsey C. Seitz Pongkarn Chakthranont Takashi Tachikawa Thomas F. Jaramillo Harold Y. Hwang 《Liver Transplantation》2016,6(7)
One of the crucial parameters dictating the efficiency of photoelectrochemical water‐splitting is the semiconductor band edge alignment with respect to hydrogen and oxygen redox potentials. Despite the importance of metal oxides in their use as photoelectrodes, studies to control the band edge alignment in aqueous solution have been limited predominantly to compound semiconductors with modulation ranges limited to a few hundred mV. The ability to modulate the flat band potential of oxide photoanodes by as much as 1.3 V, using the insertion of subsurface electrostatic dipoles near a Nb‐doped SrTiO3/aqueous electrolyte interface is reported. The tunable range achieved far exceeds previous reports in any semiconductor/aqueous electrolyte system and suggests a general design strategy for highly efficient oxide photoelectrodes. 相似文献
10.
Barium Bismuth Niobate Double Perovskite/Tungsten Oxide Nanosheet Photoanode for High‐Performance Photoelectrochemical Water Splitting 下载免费PDF全文
Baicheng Weng Corey R. Grice Jie Ge Tilak Poudel Xunming Deng Yanfa Yan 《Liver Transplantation》2018,8(10)
Recently, a new method to effectively engineer the bandgap of barium bismuth niobate (BBNO) double perovskite was reported. However, the planar electrodes based on BBNO thin films show low photocurrent densities for water oxidation owing to their poor electrical conductivity. Here, it is reported that the photoelectrochemical (PEC) activity of BBNO‐based electrodes can be dramatically enhanced by coating thin BBNO layers on tungsten oxide (WO3) nanosheets to solve the poor conductivity issue while maintaining strong light absorption. The PEC activity of BBNO/WO3 nanosheet photoanodes can be further enhanced by applying Co0.8Mn0.2Ox nanoparticles as a co‐catalyst. A photocurrent density of 6.02 mA cm?2 at 1.23 V (vs reversible hydrogen electrode (RHE)) is obtained using three optically stacked, but electrically parallel, BBNO/WO3 nanosheet photoanodes. The BBNO/WO3 nanosheet photoanodes also exhibit excellent stability in a high‐pH alkaline solution; the photoanodes demonstrate negligible photocurrent density decay while under continuous PEC operation for more than 7 h. This work suggests a viable approach to improve the PEC performance of BBNO absorber‐based devices. 相似文献
11.
Jitendra N. Tiwari Aditya Narayan Singh Siraj Sultan Kwang S. Kim 《Liver Transplantation》2020,10(24)
Solar‐assisted photoelectrochemical (PEC) water splitting to produce hydrogen energy is considered the most promising solution for clean, green, and renewable sources of energy. For scaled production of hydrogen and oxygen, highly active, robust, and cost‐effective PEC electrodes are required. However, most of the available semiconductors as a PEC electrodes have poor light absorption, material degradation, charge separation, and transportability, which result in very low efficiency for photo‐water splitting. Generally, a promising photoelectrode is obtained when the surface of the semiconductor is modified/decorated with a suitable co‐catalyst because it increases the light absorbance spectrum and prevents electron–hole recombination during photoelectrode reactions. In this regard, numerous p‐ and d‐block elements, single atoms, and graphene‐based PEC electrodes have been widely used as semiconductor/co‐catalyst junctions to boost the performances of PEC overall water splitting. This review enumerates the recent progress and applications of p‐ and d‐block elements, single atoms, and graphene‐based PEC electrodes for water splitting. The focus is placed on fundamental mechanism, efficiency, cells design, and various aspects that contribute to the large‐scale prototype device. Finally, future perspectives, summary, challenges, and outlook for improving the activity of PEC photoelectrodes toward whole‐cell water splitting are addressed. 相似文献
12.
Ningning Zhai Zhen Wen Xiaoping Chen Aimin Wei Mo Sha Jingjing Fu Yina Liu Jun Zhong Xuhui Sun 《Liver Transplantation》2020,10(33)
The conversion and transmission of blue energy in the ocean are critical issues. By employing triboelectric nanogenerators (TENGs), blue energy can be harvested but the corresponding electricity transmission and storage are still great challenges. In this work, an automatic high‐efficiency self‐powered energy collection and conversion system is proposed that converts blue energy to chemical energy. A gear‐driven unidirectional acceleration TENG is designed to convert disordered and low‐frequency water wave energy to low voltage and high current DC output. The output bias from the TENG can be used to drive a Ti–Fe2O3/FeNiOOH based photoelectrochemical cell under sunlight to produce hydrogen. Moreover, under the situation without sunlight, the self‐powered system can be automatically switched to another working state to charge a Co3O4 based lithium‐ion battery. The hydrogen production rate reaches to 4.65 µL min‐1 under sunlight at the rotation speed of 120 rpm. The conversion efficiency of the whole system is calculated to be 2.29%. The system triggered by photoswitches can automatically switch between two working states with or without sunlight and convert the blue energy to either hydrogen energy or battery energy for easy storage and transmission, which widens the future applications for blue energy. 相似文献
13.
Li‐Ion Cells: Surface Engineering Strategies of Layered LiCoO2 Cathode Material to Realize High‐Energy and High‐Voltage Li‐Ion Cells (Adv. Energy Mater. 1/2017) 下载免费PDF全文
Sujith Kalluri Moonsu Yoon Minki Jo Suhyeon Park Seungjun Myeong Junhyeok Kim Shi Xue Dou Zaiping Guo Jaephil Cho 《Liver Transplantation》2017,7(1)
14.
Over 17% Efficiency Stand‐Alone Solar Water Splitting Enabled by Perovskite‐Silicon Tandem Absorbers
Siva Krishna Karuturi Heping Shen Astha Sharma Fiona J. Beck Purushothaman Varadhan The Duong Parvathala Reddy Narangari Doudou Zhang Yimao Wan Jr‐Hau He Hark Hoe Tan Chennupati Jagadish Kylie Catchpole 《Liver Transplantation》2020,10(28)
Realizing solar‐to‐hydrogen (STH) efficiencies close to 20% using low‐cost semiconductors remains a major step toward accomplishing the practical viability of photoelectrochemical (PEC) hydrogen generation technologies. Dual‐absorber tandem cells combining inexpensive semiconductors are a promising strategy to achieve high STH efficiencies at a reasonable cost. Here, a perovskite photovoltaic biased silicon (Si) photoelectrode is demonstrated for highly efficient stand‐alone solar water splitting. A p+nn+ ‐Si/Ti/Pt photocathode is shown to present a remarkable photon‐to‐current efficiency of 14.1% under biased condition and stability over three days under continuous illumination. Upon pairing with a semitransparent mixed perovskite solar cell of an appropriate bandgap with state‐of‐the‐art performance, an unprecedented 17.6% STH efficiency is achieved for self‐driven solar water splitting. Modeling and analysis of the dual‐absorber PEC system reveal that further work into replacing the noble‐metal catalyst materials with earth‐abundant elements and improvement of perovskite fill factor will pave the way for the realization of a low‐cost high‐efficiency PEC system. 相似文献
15.
16.
17.
18.
19.
Iridium Oxide‐Assisted Plasmon‐Induced Hot Carriers: Improvement on Kinetics and Thermodynamics of Hot Carriers 下载免费PDF全文
Sung‐Fu Hung Fang‐Xing Xiao Ying‐Ya Hsu Nian‐Tzu Suen Hong‐Bin Yang Hao Ming Chen Bin Liu 《Liver Transplantation》2016,6(8)
Plasmonic nanostructures are capable of driving photocatalysis through absorbing photons in the visible region of the solar spectrum. Unfortunately, the short lifetime of plasmon‐induced hot carriers and sluggish surface chemical reactions significantly limit their photocatalytic efficiencies. Moreover, the thermodynamically favored excitation mechanism of plasmonic photocatalytic reactions is unclear. The mechanism of how the plasmonic catalyst could enhance the performance of chemical reaction and the limitation of localized surface plasmon resonance devices is proposed. In addition, a design is demonstrated through co‐catalyst decorated plasmonic nanoparticles Au/IrOX upon a semiconductor nanowire‐array TiO2 electrode that are able to considerably improve the lifetime of plasmon‐induced charge‐carriers and further facilitate the kinetics of chemical reaction. A thermodynamically favored excitation with improved kinetics of hot carriers is revealed through electrochemical studies and characterization of X‐ray absorption spectrum. This discovery provides an opportunity to efficiently manage hot carriers that are generated from metal nanostructures through surface plasmon effects for photocatalysis applications. 相似文献
20.
All‐Surface‐Atomic‐Metal Chalcogenide Sheets for High‐Efficiency Visible‐Light Photoelectrochemical Water Splitting 下载免费PDF全文
Yongfu Sun Zhihu Sun Shan Gao Hao Cheng Qinghua Liu Fengcai Lei Shiqiang Wei Yi Xie 《Liver Transplantation》2014,4(1)
Artificial all‐surface‐atomic 2D sheets can trigger breakthroughs in tailoring the physical and chemical properties of advanced functional materials. Here, the conceptually new all‐surface‐atomic semiconductors of SnS and SnSe freestanding sheets are realized using a scalable strategy. As an example, all‐surface‐atomic SnS sheets undergo surface atomic elongation and structural disordering, which is revealed by X‐ray absorption fine structure spectroscopy and first‐principles calculations, endowing them with high structural stability and an increased density of states at the valence band edge. These exotic atomic and electronic structures make the all‐surface‐atomic SnS sheet‐based photoelectrode exhibit an incident photon‐to‐current conversion efficiency of 67.1% at 490 nm, much higher than the efficiencies of other visible‐light‐driven water splitting. A photocurrent density of 5.27 mA cm‐2, which is two orders of magnitude higher than that of the bulk counterpart, is also achieved for the all‐surface‐atomic SnS sheets‐based photoelectrode. This will allow the manipulation of the basic properties of advanced materials on the atomic scale, thus paving the way for innovative applications. 相似文献