首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Electrocatalytic water splitting for hydrogen generation is hindered by the sluggish kinetics of water oxidation, and highly efficient electrocatalysts for the oxygen evolution reaction (OER) are urgently required. Numerous bi‐ and multimetal‐based, low‐cost, high‐performance OER electrocatalysts have been developed. However, unary metal–based high‐performance electrocatalysts are seldom reported. In the present study, Co2(OH)3Cl/vanadium oxide (VOy) composites are synthesized, from which VOy is completely etched out by a simple cyclic voltammetry treatment, which simultaneously transforms Co2(OH)3Cl in situ to ultrafine CoOOH. The selective removal of VOy modulates the nature of the surface in the obtained CoOOH by creating surface oxygen vacancies (Vo), along with disordered grain boundaries. The best‐performing CoOOH with optimum Vo is found to be associated with a low overpotential of 282 mV at 10 mA cm?2 catalytic current density on a simple glassy carbon electrode for OER. This facile protocol of selectively etching VOy to modulate the nature of the surface is successfully applied to synthesize another Fe‐based electrocatalyst with high OER performance, thus establishing its utility for unary metal–based electrocatalyst synthesis.  相似文献   

2.
Development of highly active and stable bifunctional oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) catalysts from earth‐abundant elements remains a grand challenge for highly demanded reversible fuel cells and metal–air batteries. Carbon catalysts have many advantages over others due to their low cost, excellent electrical conductivity, high surface area, and easy functionalization. However, they typically cannot withstand the highly oxidative OER environment. Here, a new class of bifunctional electrocatalyst is reported, consisting of ultralarge sized nitrogen doped graphene tubes (N‐GTs) (>500 nm) decorated with FeCoNi alloy particles. These tubes are prepared from an inexpensive precursor, dicyandiamide, via a template‐free graphitization process. The ORR/OER activity and the stability of these graphene tube catalysts depend strongly on the transition metal precursors. The best performing FeCoNi‐derived N‐GT catalyst exhibits excellent ORR and OER activity along with adequate electrochemical durability over a wide potential window (0–1.9 V) in alkaline media. The measured OER current is solely due to desirable O2 evolution, rather than carbon oxidation. Extensive electrochemical and physical characterization indicated that high graphitization degree, thicker tube walls, proper nitrogen doping, and presence of FeCoNi alloy particles are vital for high bifunctional activity and electrochemical durability of tubular carbon catalysts.  相似文献   

3.
Development of inexpensive and efficient oxygen evolution reaction (OER) catalysts in acidic environment is very challenging, but it is important for practical proton exchange membrane water electrolyzers. A molecular iron–nitrogen coordinated carbon nanofiber is developed, which is supported on an electrochemically exfoliated graphene (FeN4/NF/EG) electrocatalyst through carbonizing the precursor composed of iron ions absorbed on polyaniline‐electrodeposited EG. Benefitting from the unique 3D structure, the FeN4/NF/EG hybrid exhibits a low overpotential of ≈294 mV at 10 mA cm?2 for the OER in acidic electrolyte, which is much lower than that of commercial Ir/C catalysts (320 mV) as well as all previously reported acid transitional metal‐derived OER electrocatalysts. X‐ray absorption spectroscopy coupled with a designed poisoning experiment reveals that the molecular Fe?N4 species are identified as active centers for the OER in acid. The first‐principles‐based calculations verify that the Fe?N4–doped carbon structure is capable of reducing the potential barriers and boosting the electrocatalytic OER activity in acid.  相似文献   

4.
Development of inexpensive and efficient oxygen evolution reaction (OER) catalysts in acidic environment is very challenging, but it is important for practical proton exchange membrane water electrolyzers. A molecular iron–nitrogen coordinated carbon nanofiber is developed, which is supported on an electrochemically exfoliated graphene (FeN4/NF/EG) electrocatalyst through carbonizing the precursor composed of iron ions absorbed on polyaniline‐electrodeposited EG. Benefitting from the unique 3D structure, the FeN4/NF/EG hybrid exhibits a low overpotential of ≈294 mV at 10 mA cm?2 for the OER in acidic electrolyte, which is much lower than that of commercial Ir/C catalysts (320 mV) as well as all previously reported acid transitional metal‐derived OER electrocatalysts. X‐ray absorption spectroscopy coupled with a designed poisoning experiment reveals that the molecular Fe? N4 species are identified as active centers for the OER in acid. The first‐principles‐based calculations verify that the Fe? N4–doped carbon structure is capable of reducing the potential barriers and boosting the electrocatalytic OER activity in acid.  相似文献   

5.
It is demonstrated that amorphous cobalt boride (Co2B) prepared by the chemical reduction of CoCl2 using NaBH4 is an exceptionally efficient electrocatalyst for the oxygen evolution reaction (OER) in alkaline electrolytes and is simultaneously active for catalyzing the hydrogen evolution reaction (HER). The catalyst achieves a current density of 10 mA cm?2 at 1.61 V on an inert support and at 1.59 V when impregnated with nitrogen‐doped graphene. Stable performance is maintained at 10 mA cm?2 for at least 60 h. The optimized catalyst, Co2B annealed at 500 °C (Co2B‐500) evolves oxygen more efficiently than RuO2 and IrO2, and its performance matches the best cobalt‐based catalysts reported to date. Co2B is irreversibly oxidized at OER conditions to form a CoOOH surface layer. The active form of the catalyst is therefore represented as CoOOH/Co2B. EXAFS observations indicate that boron induces lattice strain in the crystal structure of the metal, which potentially diminishes the thermodynamic and kinetic barrier of the hydroxylation reaction, formation of the OOH* intermediate, a key limiting step in the OER.  相似文献   

6.
Currently, it is still a significant challenge to simultaneously boost various reactions by one electrocatalyst with high activity, excellent durability, as well as low cost. Herein, hybrid trifunctional electrocatalysts are explored via a facile one‐pot strategy toward an efficient oxygen reduction reaction (ORR), oxygen evolution reaction (OER), and hydrogen evolution reaction (HER). The catalysts are rationally designed to be composed by FeCo nanoparticles encapsuled in graphitic carbon films, Co2P nanoparticles, and N,P‐codoped carbon nanofiber networks. The FeCo nanoparticles and the synergistic effect from Co2P and FeCo nanoparticles make the dominant contributions to the ORR, OER, and HER activities, respectively. Their bifunctional activity parameter (?E) for ORR and OER is low to 0.77 V, which is much smaller than those of most nonprecious metal catalysts ever reported, and comparable with state‐of‐the‐art Pt/C and RuO2 (0.78 V). Accordingly, the as‐assembled Zn–air battery exhibits a high power density of 154 mW cm?2 with a low charge–discharge voltage gap of 0.83 V (at 10 mA cm?2) and excellent stability. The as‐constructed overall water‐splitting cell achieves a current density of 10 mA cm?2 (at 1.68 V), which is comparable to the best reported trifunctional catalysts.  相似文献   

7.
Rational design and construction of a multifunctional electrocatalyst featuring with high efficiency and low cost is fundamentally important to realize new energy technologies. Herein, a trifunctional electrocatalyst composed of FePx nanoparticles and Fe–N–C moiety supported on the N‐, P‐codoped carbon (NPC) is masterly synthesized by a facile one‐pot pyrolysis of the mixture of tannic acid, ferrous chloride, and sodium hydrogen phosphate. The synergy of each component in the FePx/Fe–N–C/NPC catalyst renders high catalytic activities and excellent durability toward both oxygen reduction reaction (ORR), oxygen evolution reaction (OER), and hydrogen evolution reaction (HER). The electrocatalytic performance and practicability of the robust FePx/Fe–N–C/NPC catalyst are further investigated under the practical operation conditions. Particularly, the overall water splitting cell assembled by the FePx/Fe–N–C/NPC catalyst only requires a voltage of 1.58 V to output the benchmark current density of 10 mA cm?2, which is superior to that of IrO2–Pt/C‐based cell. Moreover, the FePx/Fe–N–C/NPC‐based zinc–air batteries deliver high round‐trip efficiency and remarkable cycling stability, much better than that of Pt/C–IrO2 pair‐based batteries. This work offers a new strategy to design and synthesize highly effective multifunctional electrocatalysts using cheaper tannic acid derived carbon as support applied in electrochemical energy devices.  相似文献   

8.
Herein, the authors present the development of novel 0D–2D nanohybrids consisting of a nickel‐based bimetal phosphorus trisulfide (Ni1?xFexPS3) nanomosaic that decorates on the surface of MXene nanosheets (denoted as NFPS@MXene). The nanohybrids are obtained through a facile self‐assemble process of transition metal layered double hydroxide (TMLDH) on MXene surface; followed by a low temperature in situ solid‐state reaction step. By tuning the Ni:Fe ratio, the as‐synthesized NFPS@MXene nanohybrids exhibit excellent activities when tested as electrocatalysts for overall water splitting. Particularly, with the initial Ni:Fe ratio of 7:3, the obtained Ni0.7Fe0.3PS3@MXene nanohybrid reveals low overpotential (282 mV) and Tafel slope (36.5 mV dec?1) for oxygen evolution reaction (OER) in 1 m KOH solution. Meanwhile, the Ni0.9Fe0.1PS3@MXene shows low overpotential (196 mV) for the hydrogen evolution reaction (HER) in 1 m KOH solution. When integrated for overall water splitting, the Ni0.7Fe0.3PS3@MXene || Ni0.9Fe0.1PS3@MXene couple shows a low onset potential of 1.42 V and needs only 1.65 V to reach a current density of 10 mA cm?2, which is better than the all noble metal IrO2 || Pt/C electrocatalyst (1.71 mV@10 mA cm?2). Given the chemical versatility of Ni1?xFexPS3 and the convenient self‐assemble process, the nanohybrids demonstrated in this work are promising for energy conversion applications.  相似文献   

9.
Nonprecious metal catalysts (NPMCs) Fe?N?C are promising alternatives to noble metal Pt as the oxygen reduction reaction (ORR) catalysts for proton‐exchange‐membrane fuel cells. Herein, a new modulation strategy is reported to the active moiety Fe?N4 via a precise “single‐atom to single‐atom” grafting of a Pt atom onto the Fe center through a bridging oxygen molecule, creating a new active moiety of Pt1?O2?Fe1?N4. The modulated Fe?N?C exhibits remarkably improved ORR stabilities in acidic media. Moreover, it shows unexpectedly high catalytic activities toward oxygen evolution reaction (OER) and hydrogen evolution reaction (HER), with overpotentials of 310 mV for OER in alkaline solution and 60 mV for HER in acidic media at a current density of 10 mA cm?2, outperforming the benchmark RuO2 and comparable with Pt/C(20%), respectively. The enhanced multifunctional electrocatalytic properties are associated with the newly constructed active moiety Pt1?O2?Fe1?N4, which protects Fe sites from harmful species. Density functional theory calculations reveal the synergy in the new active moiety, which promotes the proton adsorption and reduction kinetics. In addition, the grafted Pt1?O2? dangling bonds may boost the OER activity. This study paves a new way to improve and extend NPMCs electrocatalytic properties through a precisely single‐atom to single‐atom grafting strategy.  相似文献   

10.
The controllable synthesis of single‐crystallized iron‐cobalt carbonate hydroxide nanosheets array on 3D conductive Ni foam (FCCH/NF) as a monolithic oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) bifunctional electrocatalyst for full water splitting is described. The results demonstrate that the incorporation of Fe can effectively tune the morphology, composition, electronic structure, and electrochemical active surface area of the electrocatalysts, thus greatly enhancing the intrinsic electrocatalytic activity. The optimal electrocatalyst (F0.25C1CH/NF) can deliver 10 and 1000 mA cm?2 at very small overpotentials of 77 and 256 mV for HER and 228 and 308 mV for OER in 1.0 m KOH without significant interference from gas evolution. The F0.25C1CH‐based two‐electrode alkaline water electrolyzer only requires cell voltages of 1.45 and 1.52 V to achieve current densities of 10 and 500 mA cm?2. The results demonstrate that such fascinating electrocatalytic activity can be ascribed to the increase in the catalytic active surface area, facilitated electron and mass transport properties, and the synergistic interactions because of the incorporation of Fe.  相似文献   

11.
The inhibitively high cost of the noble‐metal‐containing materials has become a major obstacle for the large‐scale application of rechargeable zinc‐air batteries (ZABs). To solve this problem in a practical way, a green and scalable method to prepare sandwich‐like reduced graphene oxide /carbon black/amorphous cobalt borate nanocomposites (rGO/CB/Co‐Bi) is reported. These composites are shown to be a highly efficient and robust bifunctional electrocatalyst for oxygen reduction reaction (ORR) and oxygen evolution reaction (OER). In this system, the spontaneous assembly of the GO sheet and CB nanoparticles is demonstrated by noncovalent interactions to build the sandwich‐like structure with hierarchical pore distribution. The impressive ORR and OER activities of the obtained nanocomposite are attributed to the high conductivity, large surface area, and the hierarchically porous channels. With room‐temperature synthesis and significant activities shown in the demonstrative battery test, the prepared nanocomposite can potentially serve as an alternative for noble‐metal‐based rechargeable ZAB cathode materials.  相似文献   

12.
The future large‐scale deployment of rechargeable zinc–air batteries requires the development of cheap, stable, and efficient bifunctional electrocatalysts for the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER). In this work, a highly efficient bifunctional electrocatalyst is prepared by depositing 3–5 nm NiFe layered double hydroxide (NiFe‐LDH) nanoparticles on Co,N‐codoped carbon nanoframes (Co,N‐CNF). The NiFe‐LDH/Co,N‐CNF electrocatalyst displayed an OER overpotential of 0.312 V at 10 mA cm?2 and an ORR half‐wave potential of 0.790 V. The outstanding performance of the electrocatalyst is attributable to the high electrical conductivity and excellent ORR activity of Co,N‐CNF, together with the strong anchoring of 3–5 nm NiFe‐LDH nanoparticles, which preserves active sites. Inspired by the excellent OER and ORR performance of NiFe‐LDH/Co,N‐CNF, a prototype rechargeable zinc–air battery is developed. The battery exhibited a low discharge–charge voltage gap (1.0 V at 25 mA cm?2) and long‐term cycling durability (over 80 h), and superior overall performance to a counterpart battery constructed using a mixture of IrO2 and Pt/C as the cathode. The strategy developed here can easily be adapted to synthesize other bifunctional CNF‐based hybrid electrodes for ORR and OER, providing a practical route to more efficient rechargeable zinc–air batteries.  相似文献   

13.
Large‐scale industrial application of solar‐driven water splitting has called for the development of oxygen evolution reaction (OER) catalysts that deliver high catalytic activity and stability. Here it is shown that an efficient OER catalytic substrate can be developed by roll‐to‐roll fabrication of electrodeposited Ni‐Fe foils, followed by anodization. An amorphous oxyhydroxide layer directly formed on Ni‐Fe foils exhibits high catalytic activity toward water oxidation in 1 m KOH solution, which requires an overpotential of 0.251 V to reach current density of 10 mA cm–2. The developed catalytic electrode shows the best OER activity among catalysts with film structure. The catalyst also shows prolonged stability at vigorous gas evolution condition for 36 h. To demonstrate the monolithic photoassisted water splitting device, an amorphous silicon solar cell is fabricated on Ni‐Fe catalytic substrate, resulting in lowering OER overpotential under light illumination. This monolithic device is the first demonstration that the OER catalytic substrates and the solar cells are integrated and can be easily applied for industrial scale solar‐driven water electrolysis.  相似文献   

14.
Stable, efficient, and low‐cost photoanodes are urgently required for manufacturing water‐splitting photoelectrochemical cells. Although silicon is a promising photoelectrode substrate, photocorrosion prevents its use in such devices, especially when employed as photoanodes for the oxygen evolution reaction (OER). Here, it is shown that Fe nanoparticles (NPs), deposited by cathodic electrodeposition onto n‐Si, can promote hole transfer for the OER. The influence of the surface coverage, the Si structure, as well as the electrolyte are studied here in detail. It is reported that the NP density and the Si structuration drastically affect the photoelectrochemical performance and that the electrolyte influences the stability, allowing operation times as long as 130 h for these inhomogeneously coated photoelectrodes.  相似文献   

15.
Efficient electrocatalysts are critical in various clean energy conversion and storage systems. Polyelemental nanomaterials are attractive as multifunctional catalysts due to their wide compositions and synergistic properties. However, controlled synthesis of polyelemental nanomaterials is difficult due to their complex composition. Herein, a one‐step synthetic strategy is presented to fabricate a hierarchical polyelemental nanomaterial, which contains ultrasmall precious metal nanoparticles (IrPt, ≈5 nm) anchored on spinel‐structure transition metal oxide nanoparticles. The polyelemental nanoparticles serve as excellent bifunctional catalysts for the oxygen evolution reaction (OER) and oxygen reduction reaction (ORR). The mass catalytic activity of the polyelemental nanoparticles is 7‐times higher than that of Pt in ORR and 28‐times that of Ir in OER at the same overpotentials, demonstrating the high activity of the bifunctional electrocatalyst. This outstanding performance is attributed to the controlled multiple elemental composition, mixed chemical states, and large electroactive surface area. The hierarchical nanostructure and polyelemental design of these nanoparticles offer a general and powerful alternative material for catalysis, solar cells, and more.  相似文献   

16.
A conventional water electrolyzer consists of two electrodes, each of which is embedded with a costly and rare electrocatalyst, typically IrO2/C for oxygen evolution reaction (OER) and Pt/C for hydrogen evolution reaction (HER), respectively. HER and OER electrocatalysts usually require very different pH values to keep them stable and active. Thus, the development of earth‐abundant nonprecious metal catalysts for both HER and OER is of great importance to practical applications. This work reports the results of integrated water electrolysis using the hybrids of electrospun La0.5(Ba0.4Sr0.4Ca0.2)0.5Co0.8Fe0.2O3–δ (L‐0.5) perovskite nanorods attached to reduced graphene oxide (rGO) nanosheets as bifunctional electrodes. Via rationalizing the composition and morphology of L‐0.5/rGO nanohybrids, excellent catalytic performance and stability toward OER and HER are achieved in alkaline media. The operating voltage of integrated L‐0.5/rGO electrolyzer is tested to be 1.76 V at 50 mA cm–2, which is close to that of the commercially available IrO2/C‐Pt/C couple (1.76 V @ 50 mA cm–2). Such a bifunctional electrocatalyst could be extended toward practical electrolysis use with low expanse and high efficiency. More generally, the protocol described here broadens our horizons in terms of the designs and the diverse functionalities of catalysts for use in various applications.  相似文献   

17.
Developing highly efficient, cost effective, and environmentally friendly electrocatalysts for the oxygen evolution reaction (OER), oxygen reduction reaction (ORR), and hydrogen evolution reaction (HER) is of interest for sustainable and clean energy technologies, including metal–air batteries and fuel cells. In this work, the screening of electrocatalytic activities of a series of single metallic iron, cobalt, and nickel nanoparticles and their binary and ternary alloys encapsulated in a graphitic carbon shell toward the OER, ORR, and HER in alkaline media is reported. Synthesis of these compounds proceeds by a two‐step sol–gel and carbothermal reduction procedure. Various ex situ characterizations show that with harsh electrochemical activation, the graphitic shell undergoes an electrochemical exfoliation. The modified electronic properties of the remaining graphene layers prevent their exfoliation, protect the bulk of the metallic cores, and participate in the electrocatalysis. The amount of near‐surface, higher‐oxidation‐state metals in the as‐prepared samples increases with electrochemical cycling, indicating that some metallic nanoparticles are not adequately encased within the graphite shell. Such surface oxide species provide secondary active sites for the electrocatalytic activities. The Ni–Fe binary system gives the most promising results for the OER, and the Co–Fe binary system shows the most promise for the ORR and HER.  相似文献   

18.
It is of great significance to develop highly efficient and superior stable oxygen evolution reaction (OER) electrocatalysts for upcoming electrochemical conversion technologies and clean energy systems. Here, an assembled 3D electrode is synthesized by a one‐step solvothermal process using such an original OER electrocatalyst. During the solvothermal process, Ni ions released from Ni foam in acidic solution and Fe ions added exogenously act as metal centers and coordinate with terephthalic acid (TPA) organic molecules by robust coordinate bonds, and finally, NiFe‐based metal–organic framework (MOF) nanosheets in situ grown on Ni foam, i.e., MIL‐53(FeNi)/NF, are prepared. This binder‐free 3D electrode shows superior OER activity with high current density (50 mA cm?2) at an overpotential of 233 mV, a Tafel slope of 31.3 mV dec?1, and excellent stability in alkaline aqueous solution (1 m KOH). It is discovered that introduction of Fe into MIL‐53 structure increases electrochemically‐active areas as well as reaction sites, accelerated electron transport capability, and modulated electronic structure to enhance catalytic performance. Besides, first principles calculations show that MIL‐53(FeNi) is more favorable for foreign atoms' adsorption and has increased 3d orbital electron density boosting intrinsic activity. This work elucidates a promising electrode for electrocatalysts and enriches direct application of MOF materials.  相似文献   

19.
Developing efficient, durable, and earth‐abundant electrocatalysts for both hydrogen and oxygen evolution reactions is important for realizing large‐scale water splitting. The authors report that FeB2 nanoparticles, prepared by a facile chemical reduction of Fe2+ using LiBH4 in an organic solvent, are a superb bifunctional electrocatalyst for overall water splitting. The FeB2 electrode delivers a current density of 10 mA cm?2 at overpotentials of 61 mV for hydrogen evolution reaction (HER) and 296 mV for oxygen evolution reaction (OER) in alkaline electrolyte with Tafel slopes of 87.5 and 52.4 mV dec?1, respectively. The electrode can sustain the HER at an overpotential of 100 mV for 24 h and OER for 1000 cyclic voltammetry cycles with negligible degradation. Density function theory calculations demonstrate that the boron‐rich surface possesses appropriate binding energy for chemisorption and desorption of hydrogen‐containing intermediates, thus favoring the HER process. The excellent OER activity of FeB2 is ascribed to the formation of a FeOOH/FeB2 heterojunction during water oxidation. An alkaline electrolyzer is constructed using two identical FeB2‐NF electrodes as both anode and cathode, which can achieve a current density of 10 mA cm?2 at 1.57 V for overall water splitting with a faradaic efficiency of nearly 100%, rivalling the integrated state‐of‐the‐art Pt/C and RuO2/C.  相似文献   

20.
Nonprecious metal catalysts (NPMCs) Fe? N? C are promising alternatives to noble metal Pt as the oxygen reduction reaction (ORR) catalysts for proton‐exchange‐membrane fuel cells. Herein, a new modulation strategy is reported to the active moiety Fe? N4 via a precise “single‐atom to single‐atom” grafting of a Pt atom onto the Fe center through a bridging oxygen molecule, creating a new active moiety of Pt1? O2? Fe1? N4. The modulated Fe? N? C exhibits remarkably improved ORR stabilities in acidic media. Moreover, it shows unexpectedly high catalytic activities toward oxygen evolution reaction (OER) and hydrogen evolution reaction (HER), with overpotentials of 310 mV for OER in alkaline solution and 60 mV for HER in acidic media at a current density of 10 mA cm?2, outperforming the benchmark RuO2 and comparable with Pt/C(20%), respectively. The enhanced multifunctional electrocatalytic properties are associated with the newly constructed active moiety Pt1? O2? Fe1? N4, which protects Fe sites from harmful species. Density functional theory calculations reveal the synergy in the new active moiety, which promotes the proton adsorption and reduction kinetics. In addition, the grafted Pt1? O2? dangling bonds may boost the OER activity. This study paves a new way to improve and extend NPMCs electrocatalytic properties through a precisely single‐atom to single‐atom grafting strategy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号