首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In recent years, solution‐processed conjugated polymers have been extensively used as anode interfacial layer (AIL) materials in organic solar cells (OSCs) due to their excellent film‐forming property and low‐temperature processing advantages. In this review, the authors focus on the recent advances in conjugated polymers as AIL materials in OSCs. Several of the main classes of solution‐processable conjugated polymers, including poly(3,4‐ethylenedioxythiophene):(styrenesulfonate), polyaniline, polythiophene, conjugated polyelectrolytes, sulfonated poly(diphenylamine), and crosslinked polymers as AIL materials are discussed in depth, and the mechanisms of these AIL materials in enhancing OSC performances are also elucidated. The structure–property relationships of various conjugated polymer AIL materials are analyzed, and some important design rules for such materials toward high efficiencies and stable OSCs are presented. In addition, some chemical and physical approaches to optimize the photoelectronic and physic properties of conjugated polymer AIL materials, which improve their performance in modifying OSCs, are also highlighted. Considering the significance of tandem OSCs, the relevant applications of conjugated polymer AIL materials in constructing interconnection layers for tandem OSCs are also mentioned. Finally, a brief summary is presented and some perspectives to help researchers understand the current challenges and opportunities in this area are proposed.  相似文献   

2.
3.
4.
The extension of a series of dithienopyrrole containing A‐D‐A oligothiophenes for application in solution‐processed bulk heterojunction solar cells is described. Using solvent vapor annealing, power conversion efficiencies up to 6.1% are obtained. Exposure of the photoactive layer to chloroform vapor results in increased absorption and ordering of the donor:acceptor blend, as is evident from UV‐vis absorption spectroscopy, X‐ray diffraction (XRD) spectroscopy, and atomic force microscopy (AFM). The type and position of the solubilizing alkyl chains influences the dissolution, optical, and packing properties of the oligomers. However, despite subtle differences in molecular structure, all electron donors could be implemented in solar cells demonstrating power conversion efficiencies between 4.4 and 6.1%. Upon further optimization of these in‐air, processed devices, it is expected that additional improvements in photovoltaic performance can be achieved.  相似文献   

5.
We compare the opto‐electronic and photovoltaic properties of two diketopyrrolopyrrole (DPP) based semiconducting polymers in which the DPP unit alternates along the chain with a conjugated bis(dithienyl)phenylene (4TP) unit. The two polymers differ only in the solubilizing substituents on the thiophene rings which are either alkyl (PDPP4TP) or alkoxy (PDPP4TOP) groups. We show that alkoxy groups lower the optical band gap and increase the ionization potential compared to the alkyl groups. As a result, PDDP4TOP provides a significantly higher charge generation efficiency and concomitant higher short‐circuit current, 18.0 mA cm?2 vs. 12.4 mA cm?2, compared to PDPP4TP in optimized devices with [6,6]phenyl‐C71‐butyric acid methyl ester ([70]PCBM) as acceptor, but a simultaneous decrease in open circuit voltage, 0.51 vs. 0.67 V. The increased current arises from a higher external quantum efficiency and a wider spectral coverage. The net result is a small increase in power conversion efficiency from 5.8% for PDPP4TP to 6.0% for the PDPP4TOP in optimized devices. The optimized processing conditions and bulk heterojunction morphology are virtually identical for both photoactive layers. The study demonstrates that the side chains enable effective method for rationally designing new photoactive semiconducting polymers.  相似文献   

6.
7.
8.
A series of four polymers containing benzo[1,2‐b:4,5‐b′]dithiophene (BDT) and 5,6‐difluoro‐4,7‐diiodobenzo[c][1,2,5]thiadiazole (2FBT), PBDT2FBT, PBDT2FBT‐O, PBDT2FBT‐T, and PBDT2FBT‐T‐O, are synthesized with their four different side chains, alkyl‐, alkoxy‐, alkylthienyl‐, and alkoxythienyl. Experimental results and theoretical calculations show that the molecular tuning of the side chains simultaneously influences the solubilities, energy levels, light absorption, surface tension, and intermolecular packing of the resulting polymers by altering their molecular coplanarity and electron affinity. The polymer solar cell (PSC) based on a blend of PBDT2FBT‐T/[6,6]‐phenyl‐C71‐butyric acid methyl ester (PC71BM) exhibits the best photovoltaic performance of the four PBDT2FBT derivatives, with a high open‐circuit voltage of 0.98 V and a power conversion efficiency of 6.37%, without any processing additives, post‐treatments, or optical spacers. Furthermore, PBDT2FBT‐T‐O, which has a novel side chain alkoxythienyl, showed promising properties with the most red‐shifted absorption and strong intermolecular packing property in solid state. This study provides insight into molecular design and fabrication strategies via structural tuning of the side chains of conjugated polymers for achieving highly efficient PSCs.  相似文献   

9.
The development of non‐fullerene‐based electron acceptors (especially organic molecules with sufficient absorption property within the solar spectrum region) for bulk‐heterojunction (BHJ) organic solar cells (OSCs) is an important issue for the achievement of high photoconversion efficiency. In this contribution, a new class of organic acceptors di‐cyan substituted quinacridone derivatives (DCN‐nCQA, n = 4, 6 and 8) for BHJ solar cells was designed and synthesized. DCN‐nCQA molecules possess facile synthesis, solution processability, visible and near‐IR light absorption and relatively stable characteristics. The DCN‐8CQA molecule exhibited a proper LUMO energy level (–4.1 eV), small bandgap (1.8 eV) and moderate electron mobility (10?4 cm2 V?1 S?1), suggesting that this molecule is an ideal acceptor material for the classical donor material regio‐regular poly (3‐hexylthiophene) (P3HT). A photovoltaic device with a structure of [ITO/PEDOT:PSS/P3HT:DCN‐8CQA/LiF/Al] displayed a power conversion efficiency of 1.57% and a fill factor of 57% under 100 mW cm?2 AM 1.5G simulated solar illumination. The DCN‐nCQA molecules showed remarkable absorption in the region from 650 to 700 nm, where P3HT has a weak absorption promoting overlap with the solar spectrum and potentially improving the performance of the solar cell.  相似文献   

10.
11.
An amino‐functionalized copolymer with a conjugated backbone composed of fluorene, naphthalene diimide, and thiophene spacers (PFN‐2TNDI) is introduced as an alternative electron transport layer (ETL) to replace the commonly used [6,6]‐Phenyl‐C61‐butyric acid methyl ester (PCBM) in the p–i–n planar‐heterojunction organometal trihalide perovskite solar cells. A combination of characterizations including photoluminescence (PL), time‐resolved PL decay, Kelvin probe measurement, and impedance spectroscopy is used to study the interfacial effects induced by the new ETL. It is found that the amines on the polymer side chains not only can passivate the surface traps of perovskite to improve the electron extraction properties, they also can reduce the work function of the metal cathode by forming desired interfacial dipoles. With these dual functionalities, the resulted solar cells outperform those based on PCBM with power conversion efficiency (PCE) increased from 12.9% to 16.7% based on PFN‐2TNDI. In addition to the performance enhancement, it is also found that a wide range of thicknesses of the new ETL can be applied to produce high PCE devices owing to the good electron transport property of the polymer, which offers a better processing window for potential fabrication of perovskite solar cells using large‐area coating method.  相似文献   

12.
Bulk heterojunction solar cells (BHJs) based on poly[N‐9″‐hepta‐decanyl‐2,7‐carbazole‐alt‐5,5‐(4′,7′‐di‐2‐thienyl‐2′,1′,3′‐benzothiadiazole)] (PCDTBT) can have internal quantum efficiencies approaching 100% but require active layers that are too thin to absorb more than ~70% of the above band gap light. When the active layer thickness is increased so that the cell absorbs more light, the fill factor and open circuit voltage decrease rapidly, so that the overall power conversion efficiency decreases. We find that hole‐traps in the polymer, which we characterize using space‐charge limited current measurements, play an important role in the performance of PCDTBT‐based BHJs and may limit the active layer thickness. Recombination due to carrier trapping is not often considered in BHJs because it is not believed to be a dominant loss mechanism in the “fruit‐fly” P3HT system. Furthermore, we show that in contrast to P3HT, PCDTBT has only weak short‐range molecular order, and that annealing at temperatures above the glass transition decreases the order in the π–π stacking. The decrease in structural order is matched by the movement of hole‐traps deeper into the band gap, so that thermal annealing worsens hole transport in the polymer and reduces the efficiency of PCDTBT‐based BHJs. These findings suggest that P3HT is not prototypical of the new class of high efficiency polymers, and that further improvement of BHJ efficiencies will necessitate the study of high efficiency polymers with low structural order.  相似文献   

13.
In this study, we demonstrate in‐situ n‐doping and crosslinking of semiconducting polymers as efficient electron‐transporting materials for inverted configuration polymer solar cells. The semiconducting polymers were crosslinked with bis(perfluorophenyl) azide (bis‐PFPA) to form a robust solvent‐resistant film, thereby preventing solvent‐induced erosion during subsequent solution‐based device processing. In addition, chemical n‐doping of semiconducting polymers with (4‐(1,3‐dimethyl‐2,3‐dihydro‐1H‐benzoimidazol‐2‐yl)phenyl)dimethylamine (N‐DMBI) substantially improved the power conversion efficiency of solar cells from 0.69% to 3.42%. These results open the way for progress on generally applicable polymeric interface materials, providing not only high device performance but also an effective fabrication method for solution‐processed multilayer solar cell devices.  相似文献   

14.
A novel naphthalene diimide (NDI)‐based small molecule (BiNDI) is designed and synthesized by linking two NDI monomers via a vinyl donor moiety. The electronic structure of BiNDI is carefully investigated by ultraviolet photoelectron spectroscopy (UPS). Density functional theory (DFT) sheds further light on the molecular configuration and energy level distribution. Thin film transistors (TFT) based on BiNDI show a highest electron mobility of 0.365 cm2 V?1 s?1 in ambient atmosphere. Organic photovoltaics (OPVs) by using BiNDI as the acceptor show a highest power conversion efficency (PCE) of 2.41%, which is the best result for NDI‐based small molecular acceptors. Transmission electron microscopy (TEM), atomic force microscopy (AFM), grazing incidence wide‐angle X‐ray diffraction (GIXD), and X‐ray photo­electron spectroscopy (XPS) characterization to understand the morphology and structure order of the bulk heterojunction film are performed. It is found that small amount of 1,8‐diiodooctane (DIO) (i.e., 0.5%) in the blended film facilitates the crystallization of BiNDI into fibrillar crystals, which is beneficial for the improvement of device performance.  相似文献   

15.
16.
To explore the advantages of emerging all‐polymer solar cells (all‐PSCs), growing efforts have been devoted to developing matched donor and acceptor polymers to outperform fullerene‐based PSCs. In this work, a detailed characterization and comparison of all‐PSCs using a set of donor and acceptor polymers with both conventional and inverted device structures is performed. A simple method to quantify the actual composition and light harvesting contributions from the individual donor and acceptor is described. Detailed study on the exciton dissociation and charge recombination is carried out by a set of measurements to understand the photocurrent loss. It is unraveled that fine‐tuned crystallinity of the acceptor, matched donor and acceptor with complementary absorption and desired energy levels, and device architecture engineering can synergistically boost the performance of all‐PSCs. As expected, the PBDTTS‐FTAZ:PNDI‐T10 all‐PSC attains a high and stable power conversion efficiency of 6.9% without obvious efficiency decay in 60 d. This work demonstrates that PNDI‐T10 can be a potential alternative acceptor polymer to the widely used acceptor N2200 for high‐performance and stable all‐PSCs.  相似文献   

17.
Highly efficient hydrogen evolution reactions (HERs) will determine the mass distributions of hydrogen‐powered clean technologies in the future. Metal–organic frameworks (MOFs) are emerging as a class of crystalline porous materials. Along with their derivatives, MOFs have recently been under intense study for their applications in various hydrogen production techniques. MOF‐based materials possess unique advantages, such as high specific surface area, crystalline porous structure, diverse and tunable chemical components, which offer attractive functionalities in catalyzing hydrogen evolution processes, by lowering reaction potentials, and speeding up reaction rates. Considering the rapid increase in research interest in hydrogen evolution in the last several years, this review aims to summarize recent advances in MOF‐associated hydrogen evolution research, including electrocatalytic, photocatalytic, and chemocatalytic HER. Particular attention is paid to the design and utilization of postsynthetic modification of MOFs, MOF‐supported catalysts, and MOF derivatives for highly efficient HER. The opportunities and challenges for MOF‐based materials in a hydrogen‐powered clean future are also discussed.  相似文献   

18.
Conjugated polymers with high electrical conductivities are attractive for applications in capacitors, biosensors, organic thermoelectrics, and transparent electrodes. Here, a series of solution processable dioxythiophene copolymers based on 3,4‐propylenedioxythiophene (ProDOT) and 3,4‐ethylenedioxythiophene (EDOT) is investigated as thermoelectric and transparent electrode materials. Through structural manipulation of the polymer repeat unit, the conductivity of the polymers upon oxidative solution doping is tuned from 1 × 10?3 to 3 S cm?1, with a polymer consisting of a solubilizing alkylated ProDOT unit and an electron‐rich biEDOT unit (referred to as PE2) showing the highest electrical conductivity. Optimization of the film casting method and screening of dopants result in AgPF6‐doped PE2 achieving a high electrical conductivity of over 250 S cm?1 and a thermoelectric power factor of 7 μW m?1 K?2. Oxidized spray cast films of PE2 are also assessed as a transparent electrode material for use with another electrochromic polymer. This bilayer shows reversible electrochemical switching from a colored charge‐neutral state to a highly transmissive color‐neutral, oxidized state. These results demonstrate that dioxythiophene‐based copolymers are a promising class of materials, with ProDOT–biEDOT serving as a soluble analog to the well‐studied PEDOT as a p‐type thermoelectric and electrode material.  相似文献   

19.
20.
Solution‐processed small molecule (SM) solar cells have the prospect to outperform their polymer‐fullerene counterparts. Considering that both SM donors/acceptors absorb in visible spectral range, higher expected photocurrents should in principle translate into higher power conversion efficiencies (PCEs). However, limited bulk‐heterojunction (BHJ) charge carrier mobility (<10‐4 cm2 V‐1 s‐1) and carrier lifetimes (<1 µs) often impose active layer thickness constraints on BHJ devices (≈100 nm), limiting external quantum efficiencies (EQEs) and photocurrent, and making large‐scale processing techniques particularly challenging. In this report, it is shown that ternary BHJs composed of the SM donor DR3TBDTT (DR3), the SM acceptor ICC6 and the fullerene acceptor PC71BM can be used to achieve SM‐based ternary BHJ solar cells with active layer thicknesses >200 nm and PCEs nearing 11%. The examinations show that these remarkable figures are the result of i) significantly improved electron mobility (8.2 × 10‐4 cm2 V‐1 s‐1), ii) longer carrier lifetimes (2.4 µs), and iii) reduced geminate recombination within BHJ active layers to which PC71BM has been added as ternary component. Optically thick (up to ≈500 nm) devices are shown to maintain PCEs >8%, and optimized DR3:ICC6:PC71BM solar cells demonstrate long‐term shelf stability (dark) for >1000 h, in 55% humidity air environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号