首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
Li‐ion batteries as energy storage devices need to be periodically charged for sustainably powering electronic devices owing to their limited capacities. Here, the feasibility of utilizing Li‐ion batteries as both the energy storage and scavenging units is demonstrated. Flexible Li‐ion batteries fabricated from electrospun LiMn2O4 nanowires as cathode and carbon nanowires as anode enable a capacity retention of 90% coulombic efficiency after 50 cycles. Through the coupling between triboelectrification and electrostatic induction, the adjacent electrodes of two Li‐ion batteries can deliver an output peak voltage of about 200 V and an output peak current of about 25 µA under ambient wind‐induced vibrations of a hexafluoropropene–tetrafluoroethylene copolymer film between the two Li‐ion batteries. The self‐charging Li‐ion batteries have been demonstrated to charge themselves up to 3.5 V in about 3 min under wind‐induced mechanical excitations. The advantages of the self‐charging Li‐ion batteries can provide important applications for sustainably powering electronics and self‐powered sensor systems.  相似文献   

6.
7.
8.
9.
10.
11.
Lithium‐ion batteries (LIBs) have dominated the portable electronics industry and solid‐state electrochemical research and development for the past two decades. In light of possible concerns over the cost and future availability of lithium, sodium‐ion batteries (SIBs) and other new technologies have emerged as candidates for large‐scale stationary energy storage. Research in these technologies has increased dramatically with a focus on the development of new materials for both the positive and negative electrodes that can enhance the cycling stability, rate capability, and energy density. Two‐dimensional (2D) materials are showing promise for many energy‐related applications and particularly for energy storage, because of the efficient ion transport between the layers and the large surface areas available for improved ion adsorption and faster surface redox reactions. Recent research highlights on the use of 2D materials in these future ‘beyond‐lithium‐ion’ battery systems are reviewed, and strategies to address challenges are discussed as well as their prospects.  相似文献   

12.
Aqueous Zn‐ion batteries (ZIBs) have received incremental attention because of their cost‐effectiveness and the materials abundance. They are a promising choice for large‐scale energy storage applications. However, developing suitable cathode materials for ZIBs remains a great challenge. In this work, pioneering work on the designing and construction of aqueous Zn//Na0.33V2O5 batteries is reported. The Na0.33V2O5 (NVO) electrode delivers a high capacity of 367.1 mA h g?1 at 0.1 A g?1, and exhibits long‐term cyclic stability with a capacity retention over 93% for 1000 cycles. The improvement of electrical conductivity, resulting from the intercalation of sodium ions between the [V4O12]n layers, is demonstrated by single nanowire device. Furthermore, the reversible intercalation reaction mechanism is confirmed by X‐ray diffraction, Raman, X‐ray photoelectron spectroscopy, scanning electron microscopy, and transmission electron microscopy analysis. The outstanding performance can be attributed to the stable layered structure and high conductivity of NVO. This work also indicates that layered structural materials show great potential as the cathode of ZIBs, and the indigenous ions can act as pillars to stabilize the layered structure, thereby ensuring an enhanced cycling stability.  相似文献   

13.
Advanced electrode materials with bendability and stretchability are critical for the rapid development of fully flexible/stretchable lithium‐ion batteries. However, the sufficiently stretchable lithium‐ion battery is still underdeveloped that is one of the biggest challenges preventing from realizing fully deformable power sources. Here, a low‐temperature hydrothermal synthesis of a cathode material for stretchable lithium‐ion battery is reported by the in situ growth of LiMn2O4 (LMO) nanocrystals inside 3D carbon nanotube (CNT) film networks. The LMO/CNT film composite has demonstrated the chemical bonding between the LMO active materials and CNT scaffolds, which is the most important characteristic of the stretchable electrodes. When coupled with a wrinkled MnOx /CNT film anode, a binder‐free, all‐manganese‐based stretchable full battery cell is assembled which delivers a high average specific capacity of ≈97 mA h g?1 and stabilizes after over 300 cycles with an enormous strain of 100%. Furthermore, combining with other merits such as low cost, natural abundance, and environmentally friendly, the all‐manganese design is expected to accelerate the practical applications of stretchable lithium‐ion batteries for fully flexible and biomedical electronics.  相似文献   

14.
Graphene‐containing nanomaterials have emerged as important candidates for electrode materials in lithium‐ion batteries (LIBs) due to their unique physical properties. In this review, a brief introduction to recent developments in graphene‐containing nanocomposite electrodes and their derivatives is provided. Subsequently, synthetic routes to nanoparticle/graphene composites and their electrochemical performance in LIBs are highlighted, and the current state‐of‐the‐art and most recent advances in the area of graphene‐containing nanocomposite electrode materials are summarized. The limitations of graphene‐containing materials for energy storage applications are also discussed, with an emphasis on anode and cathode materials. Potential research directions for the future development of graphene‐containing nanocomposites are also presented, with an emphasis placed on practicality and scale‐up considerations for taking such materials from benchtop curiosities to commercial products.  相似文献   

15.
16.
Thanks to low costs and the abundance of the resources, sodium‐ion (SIBs) and potassium‐ion batteries (PIBs) have emerged as leading candidates for next‐generation energy storage devices. So far, only few materials can serve as the host for both Na+ and K+ ions. Herein, a cubic phase CuSe with crystal‐pillar‐like morphology (CPL‐CuSe) assembled by the nanosheets are synthesized and its dual functionality in SIBs and PIBs is comprehensively studied. The electrochemical measurements demonstrate that CPL‐CuSe enables fast Na+ and K+ storage as well as the sufficiently long duration. Specifically, the anode delivers a specific capacity of 295 mA h g?1 at current density of 10 A g?1 in SIBs, while 280 mA h g?1 at 5 A g?1 in PIBs, as well as the high capacity retention of nearly 100% over 1200 cycles and 340 cycles, respectively. Remarkably, CPL‐CuSe exhibits a high initial coulombic efficiency of 91.0% (SIBs) and 92.4% (PIBs), superior to most existing selenide anodes. A combination of in situ X‐ray diffraction and ex situ transmission electron microscopy tests fundamentally reveal the structural transition and phase evolution of CuSe, which shows a reversible conversion reaction for both cells, while the intermediate products are different due to the sluggish K+ insertion reaction.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号