首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lithium (Li) metal is a key anode material for constructing next generation high energy density batteries. However, dendritic Li deposition and unstable solid electrolyte interphase (SEI) layers still prevent practical application of Li metal anodes. In this work, it is demonstrated that an uniform Li coating can be achieved in a lithium fluoride (LiF) decorated layered structure of stacked graphene (SG), leading to the formation of an SEI‐functionalized membrane that retards electron transfer by three orders of magnitude to avoid undesirable Li deposition on the top surface, and ameliorates Li+ ion migration to enable uniform and dendrite‐free Li deposition beneath such an interlayer. Surface chemistry analysis and density functional theory calculations demonstrate that these beneficial features arise from the formation of C–Fx surface components on the SG sheets during the Li coating process. Based on such an SEI‐functionalized membrane, stable cycling at high current densities up to 3 mA cm?2 and Li plating capacities up to 4 mAh cm?2 can be realized in LiPF6/carbonate electrolytes. This work elucidates the promising strategy of modifying Li plating behavior through the SEI‐functionalized carbon structure, with significantly improved cycling stability of rechargeable Li metal anodes.  相似文献   

2.
Solid electrolytes have been considered as a promising approach for Li dendrite prevention because of their high mechanical strength and high Li transference number. However, recent reports indicate that Li dendrites also form in Li2S‐P2S5 based sulfide electrolytes at current densities much lower than that in the conventional liquid electrolytes. The methods of suppressing dendrite formation in sulfide electrolytes have rarely been reported because the mechanism for the “unexpected” dendrite formation is unclear, limiting the successful utilization of high‐energy Li anode with these electrolytes. Herein, the authors demonstrate that the Li dendrite formation in Li2S‐P2S5 glass can be effectively suppressed by tuning the composition of the solid electrolyte interphase (SEI) at the Li/electrolyte interface through incorporating LiI into the electrolyte. This approach introduces high ionic conductivity but electronic insulation of LiI in the SEI, and more importantly, improves the mobility of Li atoms, promoting the Li depositon at the interface and thus suppresses dendrite growth. It is shown that the critical current density is improved significantly after incorporating LiI into Li2S‐P2S5 glass, reaching 3.90 mA cm?2 at 100 °C after adding 30 mol% LiI. Stable cycling of the Li‐Li cells for 200 h is also achieved at 1.50 mA cm?2 at 100 °C.  相似文献   

3.
Securing the chemical and physical stabilities of electrode/solid‐electrolyte interfaces is crucial for the use of solid electrolytes in all‐solid‐state batteries. Directly probing these interfaces during electrochemical reactions would significantly enrich the mechanistic understanding and inspire potential solutions for their regulation. Herein, the electrochemistry of the lithium/Li7La3Zr2O12‐electrolyte interface is elucidated by probing lithium deposition through the electrolyte in an anode‐free solid‐state battery in real time. Lithium plating is strongly affected by the geometry of the garnet‐type Li7La3Zr2O12 (LLZO) surface, where nonuniform/filamentary growth is triggered particularly at morphological defects. More importantly, lithium‐growth behavior significantly changes when the LLZO surface is modified with an artificial interlayer to produce regulated lithium depositions. It is shown that lithium‐growth kinetics critically depend on the nature of the interlayer species, leading to distinct lithium‐deposition morphologies. Subsequently, the dynamic role of the interlayer in battery operation is discussed as a buffer and seed layer for lithium redistribution and precipitation, respectively, in tailoring lithium deposition. These findings broaden the understanding of the electrochemical lithium‐plating process at the solid‐electrolyte/lithium interface, highlight the importance of exploring various interlayers as a new avenue for regulating the lithium‐metal anode, and also offer insight into the nature of lithium growth in anode‐free solid‐state batteries.  相似文献   

4.
Rational structure design of the current collector along with further engineering of the solid‐electrolyte interphases (SEI) layer is one of the most promising strategies to achieve uniform Li deposition and inhibit uncontrolled growth of Li dendrites. Here, a Li2S layer as an artificial SEI with high compositional uniformity and high lithium ion conductivity is in situ generated on the surface of the 3D porous Cu current collector to regulate homogeneous Li plating/stripping. Both simulations and experiments demonstrate that the Li2S protective layer can passivate the porous Cu skeleton and balance the transport rate of lithium ions and electrons, thereby alleviating the agglomerated Li deposition at the top of the electrode or at the defect area of the SEI layer. As a result, the modified current collector exhibits long‐term cycling of 500 cycles at 1 mA cm?2 and stable electrodeposition capabilities of 4 mAh cm?2 at an ultrahigh current density of 4 mA cm?2. Furthermore, full batteries (LiFePO4 as cathode) paired with this designed 3D anode with only ≈200% extra lithium show superior stability and rate performance than the batteries paired with lithium foil (≈3000% extra lithium). These explorations provide new strategies for developing high‐performance Li metal anodes.  相似文献   

5.
A combination of high ionic conductivity and facile processing suggest that sulfide‐based materials are promising solid electrolytes that have the potential to enable Li metal batteries. Although the Li2S‐P2S5 (LPS) family of compounds exhibit desirable characteristics, it is known that Li metal preferentially propagates through microstructural defects, such as particle boundaries and/or pores. Herein, it is demonstrated that a near theoretical density (98% relative density) LPS 75‐25 glassy electrolyte exhibiting high ionic conductivity can be achieved by optimizing the molding pressure and temperature. The optimal molding pressure reduces porosity and particle boundaries while preserving the preferred amorphous structure. Moreover, molecular rearrangements and favorable Li coordination environments for conduction are attained. Consequently, the Young's Modulus approximately doubles (30 GPa) and the ionic conductivity increases by a factor of five (1.1 mS cm?1) compared to conventional room temperature molding conditions. It is believed that this study can provide mechanistic insight into processing‐structure‐property relationships that can be used as a guide to tune microstructural defects/properties that have been identified to have an effect on the maximum charging current that a solid electrolyte can withstand during cycling without short‐circuiting.  相似文献   

6.
Lithium–sulfur batteries are attractive for automobile and grid applications due to their high theoretical energy density and the abundance of sulfur. Despite the significant progress in cathode development, lithium metal degradation and the polysulfide shuttle remain two critical challenges in the practical application of Li–S batteries. Development of advanced electrolytes has become a promising strategy to simultaneously suppress lithium dendrite formation and prevent polysulfide dissolution. Here, a new class of concentrated siloxane‐based electrolytes, demonstrating significantly improved performance over the widely investigated ether‐based electrolytes are reported in terms of stabilizing the sulfur cathode and Li metal anode as well as minimizing flammability. Through a combination of experimental and computational investigation, it is found that siloxane solvents can effectively regulate a hidden solvation‐ion‐exchange process in the concentrated electrolytes that results from the interactions between cations/anions (e.g., Li+, TFSI?, and S2?) and solvents. As a result, it could invoke a quasi‐solid‐solid lithiation and enable reversible Li plating/stripping and robust solid‐electrolyte interphase chemistries. The solvation‐ion‐exchange process in the concentrated electrolytes is a key factor in understanding and designing electrolytes for other high‐energy lithium metal batteries.  相似文献   

7.
All‐solid‐state batteries with an alkali metal anode have the potential to achieve high energy density. However, the onset of dendrite formation limits the maximum plating current density across the solid electrolyte and prevents fast charging. It is shown that the maximum plating current density is related to the interfacial resistance between the solid electrolyte and the metal anode. Due to their high ionic conductivity, low electronic conductivity, and stability against sodium metal, Na‐β″‐alumina ceramics are excellent candidates as electrolytes for room‐temperature all‐solid‐state batteries. Here, it is demonstrated that a heat treatment of Na‐β″‐alumina ceramics in argon atmosphere enables an interfacial resistance <10 Ω cm2 and current densities up to 12 mA cm?2 at room temperature. The current density obtained for Na‐β″‐alumina is ten times higher than that measured on a garnet‐type Li7La3Zr2O12 electrolyte under equivalent conditions. X‐ray photoelectron spectroscopy shows that eliminating hydroxyl groups and carbon contaminations at the interface between Na‐β″‐alumina and sodium metal is key to reach such values. By comparing the temperature‐dependent stripping/plating behavior of Na‐β″‐alumina and Li7La3Zr2O12, the role of the alkali metal in governing interface kinetics is discussed. This study provides new insights into dendrite formation and paves the way for fast‐charging all‐solid‐state batteries.  相似文献   

8.
Lithium‐air (Li‐air) batteries have become attractive because of their extremely high theoretical energy density. However, conventional Li‐air cells operating with non‐aqueous electrolytes suffer from poor cycle life and low practical energy density due to the clogging of the porous air cathode by insoluble discharge products, contamination of the organic electrolyte and lithium metal anode by moist air, and decomposition of the electrolyte during cycling. These difficulties may be overcome by adopting a cell configuration that consists of a lithium‐metal anode protected from air by a Li+‐ion solid electrolyte and an air electrode in an aqueous catholyte. In this type of configuration, a Li+‐ion conducting “buffer” layer between the lithium‐metal anode and the solid electrolyte is often necessary due to the instability of many solid electrolytes in contact with lithium metal. Based on the type of buffer layer, two different battery configurations are possible: “hybrid” Li‐air batteries and “aqueous” Li‐air batteries. The hybrid and aqueous Li‐air batteries utilize the same battery chemistry and face similar challenges that limit the cell performance. Here, an overview of recent developments in hybrid and aqueous Li‐air batteries is provided and the factors that influence their performance and impede their practical applications, followed by future directions are discussed.  相似文献   

9.
All‐solid‐state batteries are expected to enable batteries with high energy density with the use of lithium metal anodes. Although solid electrolytes are believed to be mechanically strong enough to prevent lithium dendrites from propagating, various reports today still show cell failure due to lithium dendrit growth at room temperature. While cell parameters such as current density, electrolyte porosity, and interfacial properties have been investigated, mechanical properties of lithium metal and the role of applied stack pressure on the shorting behavior are still poorly understood. Here, failure mechanisms of lithium metal are investigated in all‐solid‐state batteries as a function of stack pressure, and in situ characterization of the interfacial and morphological properties of the buried lithium is conducted in solid electrolytes. It is found that a low stack pressure of 5 MPa allows reliable plating and stripping in a lithium symmetric cell for more than 1000 h, and a Li | Li6PS5Cl | LiNi0.80Co0.15Al0.05O2 full cell, plating more than 4 µm of lithium per charge, is able to cycle over 200 cycles at room temperature. These results suggest the possibility of enabling the lithium metal anode in all‐solid‐state batteries at reasonable stack pressures.  相似文献   

10.
Replacing the liquid electrolyte in lithium batteries with solid‐state ion conductor is promising for next‐generation energy storage that is safe and has high energy density. Here, nanometer‐resolution ionic and electronic transport imaging of Li3PS4 (LPS), a solid‐state electrolyte (SSE), is reported. This nm resolution is achieved by using a logarithm‐scale current amplifier that enhances the current sensitivity to the fA range. Large fluctuations of ion current—one to two orders of magnitude on the LPS and on the LPS region of a polymer/LPS bulk hybrid SSE—that must be mitigated to eliminate Li dendrite formation and growth, are found. This ion current fluctuation is understood in terms of highly anisotropic transport kinetic barriers along the different crystalline axes due to different grain orientations in the polycrystalline and glass ceramic materials. The results on the bulk hybrid SSE show a sharp transition of ionic and electronic transport at the LPS/polymer boundary and decreases in average ionic current with decreasing polyimine particle size and with extensive cycling. The results elucidate the mechanism of polyimine extension into interparticles to prevent Li dendrite growth. This work opens up novel characterization of charge transport, which relates to Li plating and stripping for solid‐state‐batteries.  相似文献   

11.
The rechargeable Li–O2 battery has attracted much attention over the past decades owing to its overwhelming advantage in theoretical specific energy density compared to state‐of‐the‐art Li‐ion batteries. Practical application requires non‐aqueous Li–O2 batteries to stably obtain high reversible capacity, which highly depends on a suitable electrolyte system. Up to now, some critical challenges remain in developing desirable non‐aqueous electrolytes for Li–O2 batteries. Herein, we will review the current status and challenges in non‐aqueous liquid electrolytes, ionic liquid electrolytes and solid‐state electrolytes of Li–O2 batteries, as well as the perspectives on these issues and future development.  相似文献   

12.
The electrochemical stability window of solid electrolyte is overestimated by the conventional experimental method using a Li/electrolyte/inert metal semiblocking electrode because of the limited contact area between solid electrolyte and inert metal. Since the battery is cycled in the overestimated stability window, the decomposition of the solid electrolyte at the interfaces occurs but has been ignored as a cause for high interfacial resistances in previous studies, limiting the performance improvement of the bulk‐type solid‐state battery despite the decades of research efforts. Thus, there is an urgent need to identify the intrinsic stability window of the solid electrolyte. The thermodynamic electrochemical stability window of solid electrolytes is calculated using first principles computation methods, and an experimental method is developed to measure the intrinsic electrochemical stability window of solid electrolytes using a Li/electrolyte/electrolyte‐carbon cell. The most promising solid electrolytes, Li10GeP2S12 and cubic Li‐garnet Li7La3Zr2O12, are chosen as the model materials for sulfide and oxide solid electrolytes, respectively. The results provide valuable insights to address the most challenging problems of the interfacial stability and resistance in high‐performance solid‐state batteries.  相似文献   

13.
Lithium metal is an ultimate anode material to provide the highest energy density for a given cathode by providing a higher capacity and cell voltage. However, lithium is not used as the anode in commercial lithium‐ion batteries because electrochemical dendrite formation and growth during charge can induce a cell short circuit that ignites the flammable liquid electrolyte. Plating of lithium through a bed of Li3N particles is shown to transform dendrite growth into a 3D lithium network formed by wetting the particle surfaces; plating through a Li3N particle is without dendrite nucleation. The Li3N particles create a higher overpotential during Li deposition than that with dendrite growth in galvanostatic charge/discharge tests. The characteristic overpotential increase is correlated with the morphological changes and a more isotropic growth behavior. The Li3N‐modified Li electrode shows a stable cycling performance at 0.5 and 1.0 mA cm?2 for more than 100 cycles. The origin of the bonding responsible for wetting of the Li3N particles by lithium and for plating through a Li3N particle is discussed.  相似文献   

14.
Lithium (Li) metal anodes have long been counted on to meet the increasing demand for high energy, high‐power rechargeable battery systems but they have been plagued by uncontrollable plating, unstable solid electrolyte interphase (SEI) formation, and the resulting low Coulombic efficiency. These problems are even aggravated under commercial levels of current density and areal capacity testing conditions. In this work, the channel‐like structure of a carbonized eggplant (EP) as a stable “host” for Li metal melt infusion, is utilized. With further interphase modification of lithium fluoride (LiF), the as‐formed EP–LiF composite anode maintains ≈90% Li metal theoretical capacity and can successfully suppress dendrite growth and volume fluctuation during cycling. EP–LiF offers much improved symmetric cell and full‐cell cycling performance with lower and more stable overpotential under various areal capacity and elevated rate capability. Furthermore, carbonized EP serves as a light‐weight high‐performance current collector, achieving an average Coulombic efficiency ≈99.1% in ether‐based electrolytes with 2.2 mAh cm?2 cycling areal capacity. The natural structure of carbonized EP will inspire further artificial designs of electrode frameworks for both Li anode and sulfur cathodes, enabling promising candidates for next‐generation high‐energy density batteries.  相似文献   

15.
Thin solid‐state electrolytes with nonflammability, high ionic conductivity, low interfacial resistance, and good processability are urgently required for next‐generation safe, high energy density lithium metal batteries. Here, a 3D Li6.75La3Zr1.75Ta0.25O12 (LLZTO) self‐supporting framework interconnected by polytetrafluoroethylene (PTFE) binder is prepared through a simple grinding method without any solvent. Subsequently, a garnet‐based composite electrolyte is achieved through filling the flexible 3D LLZTO framework with a succinonitrile solid electrolyte. Due to the high content of garnet ceramic (80.4 wt%) and high heat‐resistance of the PTFE binder, such a composite electrolyte film with nonflammability and high processability exhibits a wide electrochemical window of 4.8 V versus Li/Li+ and high ionic transference number of 0.53. The continuous Li+ transfer channels between interconnected LLZTO particles and succinonitrile, and the soft electrolyte/electrode interface jointly contribute to a high ambient‐temperature ionic conductivity of 1.2 × 10?4 S cm?1 and excellent long‐term stability of the Li symmetric battery (stable at a current density of 0.1 mA cm?2 for over 500 h). Furthermore, as‐prepared LiFePO4|Li and LiNi0.5Mn0.3Co0.2O2|Li batteries based on the thin composite electrolyte exhibit high discharge specific capacities of 153 and 158 mAh g?1 respectively, and desirable cyclic stabilities at room temperature.  相似文献   

16.
The thickness of solid‐state electrolytes (SSEs) significantly affects the energy density and safety performance of all‐solid‐state lithium batteries. However, a sufficient understanding of the reactivity toward lithium metal of ultrathin SSEs (<100 µm) based on NASICON remains lacking. Herein, for the first time, a self‐standing and ultrathin (70 µm) NASICON‐type Li1.5Al0.5Ge1.5(PO4)3 (LAGP) electrolyte via a scalable solution process is developed, and X‐ray photoelectron spectroscopy reveals that changes in LAGP at the metastable Li–LAGP interface during battery operation is temperature dependent. Severe germanium reduction and decrease in LAGP particle size are detected at the Li–LAGP interface at elevated temperature. Oriented plating of lithium metal on its preferred (110) face occurs during in situ X‐ray diffraction cycling.  相似文献   

17.
Lithium–sulfur batteries (LSBs) are currently considered as promising candidates for next‐generation energy storage technologies. However, their practical application is hindered by the critical issue of the polysulfide‐shuttle. Herein, a metal organic framework (MOF)‐derived solid electrolyte is presented to address it. The MOF solid electrolyte is developed based on a Universitetet i Oslo (UIO) structure. By grafting a lithium sulfonate (‐SO3Li) group to the UIO ligand, both the ionic conductivity and the polysulfide‐suppression capability of the resulting ‐SO3Li grafted UIO (UIOSLi) solid electrolyte are greatly improved. After integrating a Li‐based ionic liquid (Li‐IL), lithium bis(trifluoromethanesulfonyl)imide in 1‐ethyl‐3‐methylimidazolium bis(trifluoromethylsulfonyl)imide, the resulting Li‐IL/UIOSLi solid electrolyte exhibits an ionic conductivity of 3.3 × 10?4 S cm?1 at room temperature. Based on its unique structure, the Li‐IL/UIOSLi solid electrolyte effectively restrains the polysulfide shuttle and suppresses lithium dendritic growth. Lithium–sulfur cells with the Li‐IL/UIOSLi solid electrolyte and a Li2S6 catholyte show stable cycling performance that preserves 84% of the initial capacity after 250 cycles with a capacity‐fade rate of 0.06% per cycle.  相似文献   

18.
Solid‐state electrolytes are widely anticipated to enable the revival of high energy density and safe metallic Li batteries, however, their lower ionic conductivity at room temperature, stiff interfacial contact, and severe polarization during cycling continue to pose challenges in practical applications. Herein, a dual‐composite concept is applied to the design of a bilayer heterostructure solid electrolyte composed of Li+ conductive garnet nanowires (Li6.75La3Zr1.75Nb0.25O12)/polyvinylidene fluoride‐co‐hexafluoropropylene (PVDF‐HFP) as a tough matrix and modified metal organic framework particles/polyethylene oxide/PVDF‐HFP as an interfacial gel. The integral ionic conductivity of the solid electrolyte reaches 2.0 × 10?4 S cm?1 at room temperature. In addition, a chemically/electrochemically stable interface is rapidly formed, and Li dendrites are well restrained by a robust inorganic shield and matrix. As a result, steady Li plating/stripping for more than 1700 h at 0.25 mA cm?2 is achieved. Solid‐state batteries using this bilayer heterostructure solid electrolyte deliver promising battery performance (efficient capacity output and cycling stability) at ambient temperature (25 °C). Moreover, the pouch cells exhibit considerable flexibility in service and unexpected endurance under a series of extreme abuse tests including hitting with a nail, burning, immersion under water, and freezing in liquid nitrogen.  相似文献   

19.
All‐solid‐state Li‐ion batteries based on Li7La3Zr2O12 (LLZO) garnet structures require novel electrode assembly strategies to guarantee a proper Li+ transfer at the electrode–electrolyte interfaces. Here, first stable cell performances are reported for Li‐garnet, c‐Li6.25Al0.25La3Zr2O12, all‐solid‐state batteries running safely with a full ceramics setup, exemplified with the anode material Li4Ti5O12. Novel strategies to design an enhanced Li+ transfer at the electrode–electrolyte interface using an interface‐engineered all‐solid‐state battery cell based on a porous garnet electrolyte interface structure, in which the electrode material is intimately embedded, are presented. The results presented here show for the first time that all‐solid‐state Li‐ion batteries with LLZO electrolytes can be reversibly charge–discharge cycled also in the low potential ranges (≈1.5 V) for combinations with a ceramic anode material. Through a model experiment, the interface between the electrode and electrolyte constituents is systematically modified revealing that the interface engineering helps to improve delivered capacities and cycling properties of the all‐solid‐state Li‐ion batteries based on garnet‐type cubic LLZO structures.  相似文献   

20.
The charge transfer kinetics between a lithium metal electrode and an inorganic solid electrolyte is of key interest to assess the rate capability of future lithium metal solid state batteries. In an in situ microelectrode study run in a scanning electron microscope, it is demonstrated that—contrary to the prevailing opinion—the intrinsic charge transfer resistance of the Li|Li6.25Al0.25La3Zr2O12 (LLZO) interface is in the order of 10?1 Ω cm2 and thus negligibly small. The corresponding high exchange current density in combination with the single ion transport mechanism (t+ ≈ 1) of the inorganic solid electrolyte enables extremely fast plating kinetics without the occurrence of transport limitations. Local plating rates in the range of several A cm?2 are demonstrated at defect free and chemically clean Li|LLZO interfaces. Practically achievable current densities are limited by lateral growth of lithium along the surface as well as electro‐chemo‐mechanical‐induced fracture of the solid electrolyte. In combination with the lithium vacancy diffusion limitation during electrodissolution, these morphological instabilities are identified as the key fundamental limitations of the lithium metal electrode for solid‐state batteries with inorganic solid electrolytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号