共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Shunmian Lu Xing Guan Xinchen Li Wei E. I. Sha Fengxian Xie Hongchao Liu Jiannong Wang Fei Huang Wallace C. H. Choy 《Liver Transplantation》2015,5(17)
A new metal‐oxide‐based interconnecting layer (ICL) structure of all‐solution processed metal oxide/dipole layer/metal oxide for efficient tandem organic solar cell (OSC) is demonstrated. The dipole layer modifies the work function (WF) of molybdenum oxide (MoO x ) to eliminate preexisted counter diode between MoO x and TiO2. Three different amino functionalized water/alcohol soluble conjugated polymers (WSCPs) are studied to show that the WF tuning of MoO x is controllable. Importantly, the results show that S‐shape current density versus voltage (J–V) characteristics form when operation temperature decreases. This implies that thermionic emission within the dipole layer plays critical role for helping recombination of electrons and holes. Meanwhile, the insignificant homotandem open‐circuit voltage (V oc) loss dependence on dipole layer thickness shows that the quantum tunneling effect is weak for efficient electron and hole recombination. Based on this ICL, poly(3‐hexylthiophene) (P3HT)‐based homotandem OSC with 1.20 V V oc and 3.29% power conversion efficiency (PCE) is achieved. Furthermore, high efficiency poly(4,8‐bis(5‐(2‐ethylhexyl)‐thiophene‐2‐yl)‐benzo[1,2‐b54,5‐b9]dithiophene‐alt alkylcarbonylthieno[3,4‐b]thiophene) (PBDTTT‐C‐T)‐based homotandem OSC with 1.54 V V oc and 8.11% PCE is achieved, with almost 15.53% enhancement compared to its single cell. This metal oxide/dipole layer/metal oxide ICL provides a new strategy to develop other qualified ICL with different hole transporting layer and electron transporting layer in tandem OSCs. 相似文献
3.
Organic Solar Cells: A New Interconnecting Layer of Metal Oxide/Dipole Layer/Metal Oxide for Efficient Tandem Organic Solar Cells (Adv. Energy Mater. 17/2015)
下载免费PDF全文

Shunmian Lu Xing Guan Xinchen Li Wei E. I. Sha Fengxian Xie Hongchao Liu Jiannong Wang Fei Huang Wallace C. H. Choy 《Liver Transplantation》2015,5(17)
4.
5.
Carr Hoi Yi Ho Taesoo Kim Yuan Xiong Yuliar Firdaus Xueping Yi Qi Dong Jeromy J. Rech Abay Gadisa Ronald Booth Brendan T. O'Connor Aram Amassian Harald Ade Wei You Thomas D. Anthopoulos Franky So 《Liver Transplantation》2020,10(25)
Tandem structure provides a practical way to realize high efficiency organic photovoltaic cells, it can be used to extend the wavelength coverage for light harvesting. The interconnecting layer (ICL) between subcells plays a critical role in the reproducibility and performance of tandem solar cells, yet the processability of the ICL has been a challenge. In this work the fabrication of highly reproducible and efficient tandem solar cells by employing a commercially available material, PEDOT:PSS HTL Solar (HSolar), as the hole transporting material used for the ICL is reported. Comparing with the conventional PEDOT:PSS Al 4083 (c‐PEDOT), HSolar offers a better wettability on the underlying nonfullerene photoactive layers, resulting in better charge extraction properties of the ICL. When FTAZ:IT‐M and PTB7‐Th:IEICO‐4F are used as the subcells, a power conversion efficiency (PCE) of 14.7% is achieved in the tandem solar cell. To validate the processability of these tandem solar cells, three other research groups have successfully fabricated tandem devices using the same recipe and the highest PCE obtained is 16.1%. With further development of donor polymers and device optimization, the device simulation results show that a PCE > 22% can be realized in tandem cells in the near future. 相似文献
6.
Chao Liu Xiaoyan Du Shuai Gao Andrej Classen Andres Osvet Yakun He Karl Mayrhofer Ning Li Christoph J. Brabec 《Liver Transplantation》2020,10(12)
The performance of tandem organic solar cells (OSCs) is directly related to the functionality and reliability of the interconnecting layer (ICL). However, it is a challenge to develop a fully functional ICL for reliable and reproducible fabrication of solution‐processed tandem OSCs with minimized optical and electrical losses, in particular for being compatible with various state‐of‐the‐art photoactive materials. Although various ICLs have been developed to realize tandem OSCs with impressively high performance, their reliability, reproducibility, and generic applicability are rarely analyzed and reported so far, which restricts the progress and widespread adoption of tandem OSCs. In this work, a robust and fully functional ICL is developed by incorporating a hydrolyzed silane crosslinker, (3‐glycidyloxypropyl)trimethoxysilane (GOPS), into poly(3,4‐ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS), and its functionality for reliable and reproducible fabrication of tandem OSCs based on various photoactive materials is validated. The cross‐linked ICL can successfully protect the bottom active layer against penetration of high boiling point solvents during device fabrication, which widely broadens the solvent selection for processing photoactive materials with high quality and reliability, providing a great opportunity to continuously develop the tandem OSCs towards future large‐scale production and commercialization. 相似文献
7.
Kai Zhang Baobing Fan Ruoxi Xia Xiang Liu Zhicheng Hu Honggang Gu Shiyuan Liu Hin‐Lap Yip Lei Ying Fei Huang Yong Cao 《Liver Transplantation》2018,8(15)
In the field of organic solar cells (OSCs), tandem structure devices exhibit very attractive advantages for improving power conversion efficiency (PCE). In addition to the well researched novel pair of active layers in different subcells, the construction of interconnecting layer (ICL) also plays a critical role in achieving high performance tandem devices. In this work, a new way of achieving environmentally friendly solvent processed polymeric ICL by adopting poly[(9,9‐bis(3′‐(N,N‐dimethylamino)propyl)‐2,7‐fluorene)‐alt‐5,5′‐bis(2,2′‐thiophene)‐2,6‐naphthalene‐1,4,5,8‐tetracaboxylic‐N,N′‐di(2‐ethylhexyl)imide] (PNDIT‐F3N) blended with poly(ethyleneimine) (PEI) as the electron transport layer (ETL) and PEDOT:PSS as the hole transport layer is reported. It is found that the modification ability of PNDIT‐F3N on PEDOT can be linearly tuned by the incorporation of PEI, which offers the opportunity to study the charge recombination behavior in ICL. At last, tandem OSC with highest PCE of 12.6% is achieved, which is one of the best tandem OSCs reported till now. These results offer a new selection for constructing efficient ICL in high performance tandem OSCs and guide the way of design new ETL materials for ICL construction, and may even be integrated in future printed flexible large area module device fabrication with the advantages of environmentally friendly solvent processing and thickness insensitivity. 相似文献
8.
Tim Becker Sara Trost Andreas Behrendt Ivan Shutsko Andreas Polywka Patrick Görrn Philip Reckers Chittaranjan Das Thomas Mayer Dario Di Carlo Rasi Koen H. Hendriks Martijn M. Wienk René A. J. Janssen Thomas Riedl 《Liver Transplantation》2018,8(10)
Multijunction solar cells are designed to improve the overlap with the solar spectrum and to minimize losses due to thermalization. Aside from the optimum choice of photoactive materials for the respective sub‐cells, a proper interconnect is essential. This study demonstrates a novel all‐oxide interconnect based on the interface of the high‐work‐function (WF) metal oxide MoOx and low‐WF tin oxide (SnOx). In contrast to typical p‐/n‐type tunnel junctions, both the oxides are n‐type semiconductors with a WF of 5.2 and 4.2 eV, respectively. It is demonstrated that the electronic line‐up at the interface of MoOx and SnOx comprises a large intrinsic interface dipole (≈0.8 eV), which is key to afford ideal alignment of the conduction band of MoOx and SnOx, without the requirement of an additional metal or organic dipole layer. The presented MoOx/SnOx interconnect allows for the ideal (loss‐free) addition of the open circuit voltages of the two sub‐cells. 相似文献
9.
In consideration of the unique advantages of new non‐fullerene acceptors and the tandem‐junction structure, organic photovoltaics (OPVs) based on them are very promising. Studies related to this emerging area began in 2016 with achieved power conversion efficiencies (PCEs) of 8–10%, which have now been boosted to 17%. In this essay, the construction of high‐performance OPVs is discussed, with a focus on combining the advantages of new non‐fullerene acceptors and the tandem‐junction structure. In order to achieve higher PCEs, methods to enable high short‐circuit current density, open‐circuit voltage, and fill factor are discussed. In addition, the stability and reproducibility of high‐efficiency OPVs are also addressed. Herein, it is forecast that the new non‐fullerene acceptors‐based tandem‐junction OPVs will become the next big wave in the field and achieve high PCEs over 20% in the near future. Some promising research directions on this emerging hot topic are proposed which may further push the field into the 25% high efficiency era and considerably advance the technology beyond laboratory research. 相似文献
10.
Zheng Tang Anders Elfwing Jonas Bergqvist Wolfgang Tress Olle Inganäs 《Liver Transplantation》2013,3(12):1606-1613
Efficient dielectric scatterers based on a mixture of TiO2 nanoparticles and polydimethylsiloxane are demonstrated for light trapping in semitransparent organic solar cells. An improvement of 80% in the photocurrent of an optimized semitransparent solar cell is achieved with the dielectric scatterer with ≈100% diffuse reflectance for wavelengths larger than 400 nm. For a parallel tandem solar cell, the dielectric scatterer generates 20% more photocurrent compared with a silver mirror beneath the cell; for a series tandem solar cell, the dielectric scatterer can be used as a photocurrent balancer between the subcells with different photoabsorbing materials. The power conversion efficiency of the tandem cell in series configuration with balanced photocurrent in the subcells exceeds that of an optimized standard solar cell with a reflective electrode. The characteristics of polydimethylsiloxane, such as flexibility and the ability to stick conformably to surfaces, also remain in the dielectric scatterers, which makes the demonstrated light trapping configuration highly suitable for large scale module manufacturing of roll‐to‐roll printed organic single‐ or tandem‐junction solar cells. 相似文献
11.
Daniel Bahro Manuel Koppitz Adrian Mertens Konstantin Glaser Jan Mescher Alexander Colsmann 《Liver Transplantation》2015,5(22)
A fundamental analysis of the external quantum efficiency (EQE) of organic tandem solar cells with equal absorbers in both subcells (homo‐tandem solar cells) is presented. Providing direct access to both subcells by introducing a conductive intermediate polymer electrode into the recombination zone, without changing the optical and electric device properties, the three‐terminal device becomes a proxy to the two‐terminal tandem solar cell properties. From the spectrally resolved EQE of the subcells in three‐terminal configuration wavelength and intensity of suitable bias light as well as bias voltage are determined that in turn allow for accurate EQE measurements of the common two‐terminal tandem solar cells. Theoretic considerations allow the prediction of the tandem solar cell's EQE from its subcells' EQEs as well as the prediction of the tandem cell EQE under monochromatic bias light illumination being in excellent agreement with experimental results. All findings discussed herein can be applied to more common hetero‐tandem solar cell architectures likewise. 相似文献
12.
Chih‐Yu Chang Lijian Zuo Hin‐Lap Yip Chang‐Zhi Li Yongxi Li Chain‐Shu Hsu Yen‐Ju Cheng Hongzheng Chen Alex K‐Y. Jen 《Liver Transplantation》2014,4(7)
Highly efficient tandem and semitransparent (ST) polymer solar cells utilizing the same donor polymer blended with [6,6]‐phenyl‐C61‐butyric acid methyl ester (PC61BM) and [6,6]‐phenyl‐C71‐butyric acid methyl ester (PC71BM) as active layers are demonstrated. A high power conversion efficiency (PCE) of 8.5% and a record high open‐circuit voltage of 1.71 V are achieved for a tandem cell based on a medium bandgap polymer poly(indacenodithiophene‐co‐phananthrene‐quinoxaline) (PIDT‐phanQ). In addition, this approach can also be applied to a low bandgap polymer poly[2,6‐(4,4‐bis(2‐ethylhexyl)‐4H‐cyclopenta[2,1‐b;3,4‐b′]dithiophene)‐alt‐4,7‐(5‐fluoro‐2,1,3‐benzothia‐diazole)] (PCPDTFBT), and PCEs up to 7.9% are achieved. Due to the very thin total active layer thickness, a highly efficient ST tandem cell based on PIDT‐phanQ exhibits a high PCE of 7.4%, which is the highest value reported to date for a ST solar cell. The ST device also possesses a desirable average visible transmittance (≈40%) and an excellent color rendering index (≈100), permitting its use in power‐generating window applications. 相似文献
13.
Rakwon Kang Sujung Park Yun Kyung Jung Dong Chan Lim Myung Joo Cha Jung Hwa Seo Shinuk Cho 《Liver Transplantation》2018,8(10)
The tunnel junction (TJ) intermediate connection layer (ICL), which is the most critical component for high‐efficient tandem solar cell, generally consists of hole conducting layer and polyethyleneimine (PEI) polyelectrolyte. However, because of the nonconducting feature of pristine PEI, photocurrent is open‐restricted in ICL even with a little thick PEI layer. Here, high‐efficiency homo‐tandem solar cells are demonstrated with enhanced efficiency by introducing carbon quantum dot (CQD)‐doped PEI on TJ–ICL. The CQD‐doped PEI provides substantial dynamic advantages in the operation of both single‐junction solar cells and homo‐tandem solar cells. The inclusion of CQDs in the PEI layer leads to improved electron extraction property in single‐junction solar cells and better series connection in tandem solar cells. The highest efficient solar cell with CQD‐doped PEI layer in between indium tin oxide (ITO) and photoactive layer exhibits a maximum power conversion efficiency (PCE) of 9.49%, which represents a value nearly 10% higher than those of solar cells with pristine PEI layer. In the case of tandem solar cells, the highest performing tandem solar cell fabricated with C‐dot‐doped PEI layer in ICL yields a PCE of 12.13%; this value represents an ≈15% increase in the efficiency compared with tandem solar cells with a pristine PEI layer. 相似文献
14.
15.
16.
Weichao Zhang Jianhua Huang Jianqiu Xu Mingmei Han Dan Su Ningning Wu Chunfeng Zhang Aiju Xu Chuanlang Zhan 《Liver Transplantation》2020,10(32)
Ternary strategies show over 16% efficiencies with increased current/voltage owing to complementary absorption/aligned energy level contributions. However, poor understanding of how the guest components tune the active layer structures still makes rational selection of material systems challenging. In this study, two phthalimide based ultrawide bandgap polymer donor guests are synthesized. Parallel energies between the highest occupied molecular orbitals of host and guest polymers are achieved via incorporating selnophene on the guest polymer. Solid‐state 19F magic angle spinning nuclear magnetic spectroscopy, graze‐incidence wide‐angle X‐ray diffraction, elemental transmission electron microscopy mapping, and transient absorption spectroscopy are combined to characterize the active layer structures. Formation of the individual guest phases selectively improves the structural order of donor and acceptor phase. The increased electron mobility in combination with the presence of the additional paths made by the guest not only minimizes the influence on charge generation and transport of the host system but also contributes to increasing the overall current generation. Therefore, phthalimide based polymers can be potential candidates that enable the simultaneous increase of open‐circuit voltage and short‐circuit current‐density via fine‐tuning energy levels and the formation of additional paths for enhancing current generation in parallel‐like multicomponent organic solar cells. 相似文献
17.
Zhanfeng Huang Dan Ouyang Chun‐Jen Shih Boping Yang Wallace C. H. Choy 《Liver Transplantation》2020,10(13)
With the remarkable progress in solution‐processed optoelectronics, high performance is required of the carrier transport/injection layer. Ternary oxides containing a variety of crystal structures, and adjustable composition that results in tunable optical and electrical properties, are one of the promising class of candidates to fulfill the requirements of carrier transport/injection layers for high‐performance and stable optoelectronic devices. Solution‐processed ternary oxides have seen considerable progress in recent decades, due to their advantages in the quest to design low‐cost, high‐performance, large‐scale, and stable optoelectronic devices. Herein, the recent advances of solution‐processed ternary oxides are reviewed. The first section consists of a brief introduction to the topic. In the following section, the fundamentals of the effect of tuning ternary oxide composition are summarized. Section three briefly reviews the synthesis approaches for preparing ternary oxides. Section four discusses the recent progress of solution‐processed ternary oxide as carrier transport/injection layer in optoelectronic devices (such as organic solar cells, perovskite solar cells, organic light emitting diodes, etc.). In this section, the impact of controlling ternary oxide composition on device performance and stability is highlighted. Finally, a brief summary and an outlook are given. 相似文献
18.
Yaokang Zhang Zhongwei Wu Peng Li Luis K. Ono Yabing Qi Jixiang Zhou Hui Shen Charles Surya Zijian Zheng 《Liver Transplantation》2018,8(1)
Semitransparent perovskite solar cells (st‐PSCs) have received remarkable interest in recent years because of their great potential in applications for solar window, tandem solar cells, and flexible photovoltaics. However, all reported st‐PSCs require expensive transparent conducting oxides (TCOs) or metal‐based thin films made by vacuum deposition, which is not cost effective for large‐scale fabrication: the cost of TCOs is estimated to occupy ≈75% of the manufacturing cost of PSCs. To address this critical challenge, this study reports a low‐temperature and vacuum‐free strategy for the fabrication of highly efficient TCO‐free st‐PSCs. The TCO‐free st‐PSC on glass exhibits 13.9% power conversion efficiency (PCE), and the four‐terminal tandem cell made with the st‐PSC top cell and c‐Si bottom cell shows an overall PCE of 19.2%. Due to the low processing temperature, the fabrication of flexible st‐PSCs is demonstrated on polyethylene terephthalate and polyimide, which show excellent stability under repeated bending or even crumbing. 相似文献
19.
Zhen Li Shengfan Wu Jie Zhang Ka Chun Lee Hang Lei Francis Lin Zilong Wang Zonglong Zhu Alex K. Y. Jen 《Liver Transplantation》2020,10(18)
Perovskite‐organic tandem solar cells are attracting more attention due to their potential for highly efficient and flexible photovoltaic device. In this work, efficient perovskite‐organic monolithic tandem solar cells integrating the wide bandgap perovskite (1.74 eV) and low bandgap organic active PBDB‐T:SN6IC‐4F (1.30 eV) layer, which serve as the top and bottom subcell, respectively, are developed. The resulting perovskite‐organic tandem solar cells with passivated wide‐bandgap perovskite show a remarkable power conversion efficiency (PCE) of 15.13%, with an open‐circuit voltage (Voc) of 1.85 V, a short‐circuit photocurrent (Jsc) of 11.52 mA cm?2, and a fill factor (FF) of 70.98%. Thanks to the advantages of low temperature fabrication processes and the flexibility properties of the device, a flexible tandem solar cell which obtain a PCE of 13.61%, with Voc of 1.80 V, Jsc of 11.07 mA cm?2, and FF of 68.31% is fabricated. Moreover, to demonstrate the achieved high Voc in the tandem solar cells for potential applications, a photovoltaic (PV)‐driven electrolysis system combing the tandem solar cell and water splitting electrocatalysis is assembled. The integrated device demonstrates a solar‐to‐hydrogen efficiency of 12.30% and 11.21% for rigid, and flexible perovskite‐organic tandem solar cell based PV‐driven electrolysis systems, respectively. 相似文献
20.
Zheng Tang Zandra George Zaifei Ma Jonas Bergqvist Kristofer Tvingstedt Koen Vandewal Ergang Wang L. Mattias Andersson Mats R. Andersson Fengling Zhang Olle Inganäs 《Liver Transplantation》2012,2(12):1467-1476
Semi‐transparent (ST) organic solar cells with potential application as power generating windows are studied. The main challenge is to find proper transparent electrodes with desired electrical and optical properties. In this work, this is addressed by employing an amphiphilic conjugated polymer PFPA‐1 modified ITO coated glass substrate as the ohmic electron‐collecting cathode and PEDOT:PSS PH1000 as the hole‐collecting anode. For active layers based on different donor polymers, considerably lower reflection and parasitic absorption are found in the ST solar cells as compared to solar cells in the standard geometry with an ITO/PEDOT:PSS anode and a LiF/Al cathode. The ST solar cells have remarkably high internal quantum efficiency at short circuit condition (~90%) and high transmittance (~50%). Hence, efficient ST tandem solar cells with enhanced power conversion efficiency (PCE) compared to a single ST solar cell can be constructed by connecting the stacked two ST sub‐cells in parallel. The total loss of photons by reflection, parasitic absorption and transmission in the ST tandem solar cell can be smaller than the loss in a standard solar cell based on the same active materials. We demonstrate this by stacking five separately prepared ST cells on top of each other, to obtain a higher photocurrent than in an optimized standard solar cell. 相似文献