首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recently, a new method to effectively engineer the bandgap of barium bismuth niobate (BBNO) double perovskite was reported. However, the planar electrodes based on BBNO thin films show low photocurrent densities for water oxidation owing to their poor electrical conductivity. Here, it is reported that the photoelectrochemical (PEC) activity of BBNO‐based electrodes can be dramatically enhanced by coating thin BBNO layers on tungsten oxide (WO3) nanosheets to solve the poor conductivity issue while maintaining strong light absorption. The PEC activity of BBNO/WO3 nanosheet photoanodes can be further enhanced by applying Co0.8Mn0.2Ox nanoparticles as a co‐catalyst. A photocurrent density of 6.02 mA cm?2 at 1.23 V (vs reversible hydrogen electrode (RHE)) is obtained using three optically stacked, but electrically parallel, BBNO/WO3 nanosheet photoanodes. The BBNO/WO3 nanosheet photoanodes also exhibit excellent stability in a high‐pH alkaline solution; the photoanodes demonstrate negligible photocurrent density decay while under continuous PEC operation for more than 7 h. This work suggests a viable approach to improve the PEC performance of BBNO absorber‐based devices.  相似文献   

2.
Organolead halide perovskite materials have demonstrated great potential in the solar cells field owing to their excellent optoelectronic properties. However, the instability issue of the perovskites impedes the translation of their attractive features for the solar fuel production such as photoelectrochemical H2 production from water splitting. Herein, CH3NH3PbI3 a photocathode with a sandwich‐like structure is fabricated with a general and scalable approach toward addressing this issue. The photocathode exhibits an onset potential at 0.95 V versus reversible hydrogen electrode (RHE) and a photocurrent density of ?18 mA cm?2 at 0 V versus RHE with an impressive ideal ratiometric power‐saved efficiency of 7.63%. More impressively, the photocathode retains good stability under 12 h continuous illumination in water at wide pH range. This performance is much superior to that of the best perovskite‐based photoelectrode ever reported.  相似文献   

3.
The bandgap engineering of semiconductors, in particular low‐cost organic/polymeric photocatalysts could directly influence their behavior in visible photon harvesting. However, an effective and rational pathway to stepwise change of the bandgap of an organic/polymeric photocatalyst is still very challenging. An efficient strategy is demonstrated to tailor the bandgap from 2.7 eV to 1.9 eV of organic photocatalysts by carefully manipulating the linker/terminal atoms in the chains via innovatively designed polymerization. These polymers work in a stable and efficient manner for both H2 and O2 evolution at ambient conditions (420 nm < λ < 710 nm), exhibiting up to 18 times higher hydrogen evolution rate (HER) than a reference photocatalyst g‐C3N4 and leading to high apparent quantum yields (AQYs) of 8.6%/2.5% at 420/500 nm, respectively. For the oxygen evolution rate (OER), the optimal polymer shows 19 times higher activity compared to g‐C3N4 with excellent AQYs of 4.3%/1.0% at 420/500 nm. Both theoretical modeling and spectroscopic results indicate that such remarkable enhancement is due to the increased light harvesting and improved charge separation. This strategy thus paves a novel avenue to fabricate highly efficient organic/polymeric photocatalysts with precisely tunable operation windows and enhanced charge separation.  相似文献   

4.
Understanding the interfacial electronic structures of heterojunctions, a challenging undertaking, is extremely important to the design of photoelectrodes for efficient water splitting. The heterostructured interfaces in terms of crystal defects at the atomic‐level exemplified by TiO2/BiVO4 are studied. Results from both experimental observations and theoretical calculations clearly confirm the spontaneous formation of defective interfaces in the heterostructures. TiO2/BiVO4 junction with engineered interfacial defects can efficiently increase the carrier density and extend the lifetime of electrons. The inherent phenomenon of defective electronic structures in different heterostructures creates a significant impact on their photoelectrochemical performance. The synergetic effect between defect‐mediated mechanism and organic quantum dots sensitization yields significantly increased photoconversion efficiency, which is even superior to that of common metal sulfide sensitized ones. This result demonstrates an approach worthy for the design and fabrication of defect‐mediated heterostructures for water splitting, without utilizing harmful metal sulfides. Moreover, new insights into the influence of intrinsic defects on the interfacial charge transfer process between two different semiconductors for energy‐related applications have also been provided.  相似文献   

5.
State‐of‐the‐art water‐oxidation catalysts (WOCs) in acidic electrolytes usually contain expensive noble metals such as ruthenium and iridium. However, they too expensive to be implemented broadly in semiconductor photoanodes for photoelectrochemical (PEC) water splitting devices. Here, an Earth‐abundant CoFe Prussian blue analogue (CoFe‐PBA) is incorporated with core–shell Fe2O3/Fe2TiO5 type II heterojunction nanowires as composite photoanodes for PEC water splitting. Those deliver a high photocurrent of 1.25 mA cm?2 at 1.23 V versus reversible reference electrode in acidic electrolytes (pH = 1). The enhancement arises from the synergic behavior between the successive decoration of the hematite surface with nanolayers of Fe2TiO5 and then, CoFe‐PBA. The underlying physical mechanism of performance enhancement through formation of the Fe2O3/Fe2TiO5/CoFe‐PBA heterostructure reveals that the surface states’ electronic levels of hematite are modified such that an interfacial charge transfer becomes kinetically favorable. These findings open new pathways for the future design of cheap and efficient hematite‐based photoanodes in acidic electrolytes.  相似文献   

6.
Solar cells with organic‐inorganic lead halide perovskites have achieved great success and their power conversion efficiency (PCE) has reached to 22.1%. To address the toxicology of lead element and some stability issues associated with the organic‐inorganic lead halide perovskites, inorganic lead‐free perovskites have gained more attentions from the photovoltaic research community. Herein, a series of chalcogenide perovskites are proposed as optical absorber materials for thin‐film solar cells. SrSnSe3 and SrSnS3 are predicted to be direct bandgap semiconductors with the bandgap value being within the optimal range of 0.9–1.6 eV. Both SrSnSe3 and SrSnS3 not only exhibit good optical absorption properties and carrier mobility, but also possess flexible bandgaps that can be continuously tuned within the grange of 0.9–1.6 eV via the element‐mixing strategy, thereby render both perovskites as promising candidates for photovoltaic applications.  相似文献   

7.
8.
Photoelectrochemical (PEC) water splitting represents an environmentally friendly and sustainable method to obtain hydrogen fuel. Semiconductor materials as the central components in PEC water splitting cells have decisive influences on the device's solar‐to‐hydrogen conversion efficiency. Among semiconductors, metal oxides have received a lot of attention due to their outstanding (photo)‐electrochemical stability, low cost, favorable band edge positions and wide distribution of bandgaps. In the past decades, significant processes have been made in developing metal oxide nanomaterials for PEC water splitting. In this review, the recent progress using metal oxides as photoelectrodes and co‐catalysts for PEC water splitting is summarized. Their performance, limitations and potentials are also discussed. Last, the key challenges and opportunities in the development and implementation of metal oxide nanomaterials for PEC water splitting are discussed.  相似文献   

9.
10.
Sb2Se3 has recently spurred great interest as a promising light‐absorbing material for solar energy conversion. Sb2Se3 consists of 1D covalently linked nanoribbons stacked via van der Waals forces and its properties strongly depend on the crystallographic orientation. However, strategies for adjusting the anisotropy of 1D Sb2Se3 nanostructures are rarely investigated. Here, a novel approach is presented to fabricate 1D Sb2Se3 nanostructure arrays with different aspect ratios on conductive substrates by simply spin‐coating Sb‐Se solutions with different molar ratios of thioglycolic acid and ethanolamine. A relatively small proportion of thioglycolic acid induces the growth of short Sb2Se3 nanorod arrays with preferred orientation, leading to fast carrier transport and enhanced photocurrent. After the deposition of TiO2 and Pt, an appropriately oriented Sb2Se3 nanostructure array exhibits a significantly enhanced photoelectrochemical performance; the photocurrent reaches 12.5 mA cm?2 at 0 V versus reversible hydrogen electrode under air mass 1.5 global illumination.  相似文献   

11.
One of the crucial parameters dictating the efficiency of photoelectrochemical water‐splitting is the semiconductor band edge alignment with respect to hydrogen and oxygen redox potentials. Despite the importance of metal oxides in their use as photoelectrodes, studies to control the band edge alignment in aqueous solution have been limited predominantly to compound semiconductors with modulation ranges limited to a few hundred mV. The ability to modulate the flat band potential of oxide photoanodes by as much as 1.3 V, using the insertion of subsurface electrostatic dipoles near a Nb‐doped SrTiO3/aqueous electrolyte interface is reported. The tunable range achieved far exceeds previous reports in any semiconductor/aqueous electrolyte system and suggests a general design strategy for highly efficient oxide photoelectrodes.  相似文献   

12.
13.
Recently, the stability of organic–inorganic perovskite thin films under thermal, photo, and moisture stresses has become a major concern for further commercialization due to the high volatility of the organic cations in the prototype perovskite composition (CH3NH3PbI3). All inorganic cesium (Cs) based perovskite is an alternative to avoid the release or decomposition of organic cations. Moreover, substituting Pb with Sn in the organic–inorganic lead halide perovskites has been demonstrated to narrow the bandgap to 1.2–1.4 eV for high‐performance perovskite solar cells. In this work, a series of CsPb1?xSnxIBr2 perovskite alloys via one‐step antisolvent method is demonstrated. These perovskite films present tunable bandgaps from 2.04 to 1.64 eV. Consequently, the CsPb0.75Sn0.25IBr2 with homogeneous and densely crystallized morphology shows a remarkable power conversion efficiency of 11.53% and a high Voc of 1.21 V with a much improved phase stability and illumination stability. This work provides a possibility for designing and synthesizing novel inorganic halide perovskites as the next generation of photovoltaic materials.  相似文献   

14.
The development of highly efficient and low‐cost electrocatalysts for oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) is paramount for water splitting associated with the storage of clean and renewable energy. Here, this study reports its findings in the development of a nanostructured perovskite oxide as OER/HER bifunctional electrocatalyst for overall water splitting. Prepared by a facile electrospinning method, SrNb0.1Co0.7Fe0.2O3–δ perovskite nanorods (SNCF‐NRs) display excellent OER and HER activity and stability in an alkaline solution, benefiting from the catalytic nature of perovskites and unique structural features. More importantly, the SNCF‐NR delivers a current density of 10 mA cm?2 at a cell voltage of merely ≈1.68 V while maintaining remarkable durability when used as both anodic and cathodic catalysts in an alkaline water electrolyzer. The performance of this bifunctional perovskite material is among the best ever reported for overall water splitting, offering a cost‐effective alternative to noble metal based electrocatalysts.  相似文献   

15.
Indoor photovoltaics (IPVs) are attracting renewed interest because they can provide sustainable energy through the recycling of photon energy from household lighting facilities. Herein, the Shockley–Queisser model is used to calculate the upper limits of the power conversion efficiencies (PCEs) of perovskite solar cells (PeSCs) for two types of artificial light sources: fluorescent tubes (FTs) and white light–emitting diodes (WLEDs). An unusual zone is found in which the dependence of the PCEs on the bandgap (Eg) under illumination from the indoor lighting sources follows trends different from that under solar irradiation. In other words, IPVs exhibiting high performance under solar irradiation may not perform well under indoor lighting conditions. Furthermore, the ideal bandgap energy for harvesting photonic power from these indoor lighting sources is ≈1.9 eV—a value higher than that of common perovskite materials (e.g., for CH3NH3PbI3). Accordingly, Br? ions are added into the perovskite films to increase their values of Eg. A resulting PeSC featuring a wider bandgap exhibits PCEs of 25.94% and 25.12% under illumination from an FT and a WLED, respectively. Additionally, large‐area (4 cm2) devices are prepared for which the PCE reaches ≈18% under indoor lighting conditions.  相似文献   

16.
17.
18.
Photoelectrochemical water splitting represents an attractive method of capturing and storing the immense energy of sunlight in the form of hydrogen, a clean chemical fuel. Given the large energetic demand of water electrolysis, and the defined spectrum of photons available from incident sunlight, a two absorber tandem device is required to achieve high efficiencies. The two absorbers should be of different and complementary bandgaps, connected in series to achieve the necessary voltage, and arranged in an optical stack configuration to maximize the utilization of sunlight. This latter requirement demands a top device that is responsive to high‐energy photons but also transparent to lower‐energy photons, which pass through to illuminate the bottom absorber. Here, cuprous oxide (Cu2O) is employed as a top absorber component, and the factors influencing the balance between transparency and efficiency toward operation in a tandem configuration are studied. Photocathodes based on Cu2O electrodeposited onto conducting glass substrates treated with thin, discontinuous layers of gold achieve reasonable sub‐bandgap transmittance while retaining performances comparable to their opaque counterparts. This new high‐performance transparent photocathode is demonstrated in tandem with a hybrid perovskite photovoltaic cell, resulting in a full device capable of standalone sunlight‐driven water splitting.  相似文献   

19.
Organic–inorganic halide perovskite (OIHP) solar cells with efficiency over 18% power conversion efficiency (PCE) have been widely achieved with lab scale spin‐coating method which is however not scalable for the fabrication of large area solar panels. The PCEs of OIHP solar cells made by scalable deposition methods, such as doctor‐blading or slot‐die coating, have been lagging far behind than spin‐coated devices. In this study the authors report composition engineering in doctor‐bladed OIHP solar cells with p–i–n planar heterojunction structure to enhance their efficiency. Phase purer OIHP thin films are obtained by incorporating a small amount of cesium (Cs+) and bromine (Br?) ions into perovskite precursor solution, which also reduces the required film formation temperature. Pinhole free OIHP thin films with micrometer‐sized grains have been obtained assisted by a secondary grain growth with added methylammonium chloride into the precursor solution. The OIHP solar cells using these bladed thin films achieved PCEs over 19.0%, with the best stabilized PCE reaching 19.3%. This represents a significant step toward scalable manufacture of OIHP solar cells.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号