首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sodium (Na) super ion conductor structured Na3V2(PO4)3 (NVP) is extensively explored as cathode material for sodium‐ion batteries (SIBs) due to its large interstitial channels for Na+ migration. The synthesis of 3D graphene‐like structure coated on NVP nanoflakes arrays via a one‐pot, solid‐state reaction in molten hydrocarbon is reported. The NVP nanoflakes are uniformly coated by the in situ generated 3D graphene‐like layers with the thickness of 3 nm. As a cathode material, graphene covered NVP nanoflakes exhibit excellent electrochemical performances, including close to theoretical reversible capacity (115.2 mA h g?1 at 1 C), superior rate capability (75.9 mA h g?1 at 200 C), and excellent cyclic stability (62.5% of capacity retention over 30000 cycles at 50 C). Furthermore, the 3D graphene‐like cages after removing NVP also serve as a good anode material and deliver a specific capacity of 242.5 mA h g?1 at 0.1 A g?1. The full SIB using these two cathode and anode materials delivers a high specific capacity (109.2 mA h g?1 at 0.1 A g?1) and good cycling stability (77.1% capacity retention over 200 cycles at 0.1 A g?1).  相似文献   

2.
Sodium ion batteries (SIBs) have drawn significant attention owing to their low cost and inherent safety. However, the absence of suitable anode materials with high rate capability and long cycling stability is the major challenge for the practical application of SIBs. Herein, an efficient anode material consisting of uniform hollow iron sulfide polyhedrons with cobalt doping and graphene wrapping (named as CoFeS@rGO) is developed for high‐rate and long‐life SIBs. The graphene‐encapsulated hollow composite assures fast and continuous electron transportation, high Na+ ion accessibility, and strong structural integrity, showing an extremely small volume expansion of only 14.9% upon sodiation and negligible volume contraction during the desodiation. The CoFeS@rGO electrode exhibits high specific capacity (661.9 mAh g?1 at 100 mA g?1), excellent rate capability (449.4 mAh g?1 at 5000 mA g?1), and long cycle life (84.8% capacity retention after 1500 cycles at 1000 mA g?1). In situ X‐ray diffraction and selected‐area electron diffraction patterns show that this novel CoFeS@rGO electrode is based on a reversible conversion reaction. More importantly, when coupled with a Na3V2(PO4)3/C cathode, the sodium ion full battery delivers a superexcellent rate capability (496.8 mAh g?1 at 2000 mA g?1) and ≈96.5% capacity retention over 200 cycles at 500 mA g?1 in the 1.0–3.5 V window. This work indicates that the rationally designed anode material is highly applicable for the next generation SIBs with high‐rate capability and long‐term cyclability.  相似文献   

3.
Three‐dimensional mesoporous TiO2‐Sn/C core‐shell nanowire arrays are prepared on Ti foil as anodes for lithium‐ion batteries. Sn formed by a reduction of SnO2 is encapsulated into TiO2 nanowires and the carbon layer is coated onto it. For additive‐free, self‐supported anodes in Li‐ion batteries, this unique core‐shell composite structure can effectively buffer the volume change, suppress cracking, and improve the conductivity of the electrode during the discharge‐charge process, thus resulting in superior rate capability and excellent long‐term cycling stability. Specifically, the TiO2‐Sn/C nanowire arrays display rechargeable discharge capacities of 769, 663, 365, 193, and 90 mA h g?1 at 0.1C, 0.5C, 2C 10C, and 30C, respectively (1C = 335 mA g?1). Furthermore, the TiO2‐Sn/C nanowire arrays exhibit a capacity retention rate of 84.8% with a discharge capacity of over 160 mA h g?1, even after 100 cycles at a high current rate of 10C.  相似文献   

4.
Hard carbon (HC) is the state‐of‐the‐art anode material for sodium‐ion batteries (SIBs). However, its performance has been plagued by the limited initial Coulombic efficiency (ICE) and mediocre rate performance. Here, experimental and theoretical studies are combined to demonstrate the application of lithium‐pretreated HC (LPHC) as high‐performance anode materials for SIBs by manipulating the solid electrolyte interphase in tetraglyme (TEGDME)‐based electrolyte. The LPHC in TEGDME can 1) deliver > 92% ICE and ≈220 mAh g?1 specific capacity, twice of the capacity (≈100 mAh g?1) in carbonate electrolyte; 2) achieve > 85% capacity retention over 1000 cycles at 1000 mA g?1 current density (4 C rate, 1 C = 250 mA g?1) with a specific capacity of ≈150 mAh g?1, ≈15 times of the capacity (10 mAh g?1) in carbonate. The full cell of Na3V2(PO4)3‐LPHC in TEGDME demonstrated close to theoretical specific capacity of ≈98 mAh g?1 based on Na3V2(PO4)3 cathode, ≈2.5 times of the value (≈40 mAh g?1) with nontreated HC. This work provides new perception on the anode development for SIBs.  相似文献   

5.
Recently, sodium ion batteries (SIBs) have been widely investigated as one of the most promising candidates for replacing lithium ion batteries (LIBs). For SIBs or LIBs, designing a stable and uniform solid electrolyte interphase (SEI) at the electrode–electrolyte interface is the key factor to provide high capacity, long‐term cycling, and high‐rate performance. In this paper, it is described how a remarkably enhanced SEI layer can be obtained on TiO2 nanotube (TiO2 NTs) arrays that allows for a strongly improved performance of sodium battery systems. Key is that a Li+ pre‐insertion in TiO2 NTs can condition the SEI for Na+ replacement. SIBs constructed with Li‐pre‐inserted NTs deliver an exceptional Na+ cycling stability (e.g., 99.9 ± 0.1% capacity retention during 250 cycles at a current rate of 50 mA g?1) and an excellent rate capability (e.g., 132 mA h g?1 at a current rate of 1 A g?1). The key factor in this outstanding performance is that Li‐pre‐insertion into TiO2 NTs leads not only to an enhanced electronic conductivity in the tubes, but also expands the anatase lattice for facilitated subsequent Na+ cycling.  相似文献   

6.
Molybdenum disulfide (MoS2) has been recognized as a promising anode material for high‐energy Li‐ion (LIBs) and Na‐ion batteries (SIBs) due to its apparently high capacity and intriguing 2D‐layered structure. The low conductivity, unsatisfied mechanical stability, and limited active material utilization are three key challenges associated with MoS2 electrodes especially at high current rates and mass active material loading. Here, vertical MoS2 nanosheets are controllably patterned onto electrochemically exfoliated graphene (EG). Within the achieved hierarchical architecture, the intimate contact between EG and MoS2 nanosheets, interconnected network, and effective exposure of active materials by vertical channels simultaneously overcomes the above three problems, enabling high mechanical integrity and fast charge transport kinetics. Serving as anode material for LIBs, EG‐MoS2 with 95 wt% MoS2 content delivered an ultrahigh‐specific capacity of 1250 mA h g?1 after 150 stable cycles at 1 A g?1, which is among the highest values in all reported MoS2 electrodes, and excellent rate performance (970 mA h g?1 at 5 A g?1). Moreover, impressive cycling stability (509 mA h g?1 at 1 A g?1 after 250 cycles) and rate capability (423 mA h g?1 at 2 A g?1) were also achieved for SIBs. The area capacities reached 1.27 and 0.49 mA h cm?2 at ≈1 mA cm?2 for LIBs and SIBs, respectively. This work may inspire the development of new 2D hierarchical structures for high efficiency energy storage and conversion.  相似文献   

7.
Sodium‐ion capacitors (SICs) are emerging energy storage devices with high energy, high power, and durable life. Sn is a promising anode material for lithium storage, but the poor conductivity of the a‐NaSn phase upon sodaition hinders its implementation in SICs. Herein, a superior Sn‐based anode material consisting of plum pudding‐like Co2P/Sn yolk encapsulated with nitrogen‐doped carbon nanobox (Co2P/Sn@NC) for high‐performance SICs is reported. The 8–10 nm metallic nanoparticles produced in situ are uniformly dispersed in the amorphous Sn matrix serving as conductive fillers to facilitate electron transfer in spite of the formation of electrically resistive a‐NaSn phase during cycling. Meanwhile, the carbon shell buffers the large expansion of active Sn and provides a stable electrode–electrolyte interface. Owing to these merits, the yolk–shell Co2P/Sn@NC demonstrates a large capacity of 394 mA h g?1 at 100 mA g?1, high rate capability of 168 mA h g?1 at 5000 mA g?1, and excellent cyclability with 87% capacity retention after 10 000 cycles. By integrating the Co2P/Sn@NC anode with a peanut shell‐derived carbon cathode in the SIC, high energy densities of 112.3 and 43.7 Wh kg?1 at power densities of 100 and 10 000 W kg?1 are achieved.  相似文献   

8.
Thanks to low costs and the abundance of the resources, sodium‐ion (SIBs) and potassium‐ion batteries (PIBs) have emerged as leading candidates for next‐generation energy storage devices. So far, only few materials can serve as the host for both Na+ and K+ ions. Herein, a cubic phase CuSe with crystal‐pillar‐like morphology (CPL‐CuSe) assembled by the nanosheets are synthesized and its dual functionality in SIBs and PIBs is comprehensively studied. The electrochemical measurements demonstrate that CPL‐CuSe enables fast Na+ and K+ storage as well as the sufficiently long duration. Specifically, the anode delivers a specific capacity of 295 mA h g?1 at current density of 10 A g?1 in SIBs, while 280 mA h g?1 at 5 A g?1 in PIBs, as well as the high capacity retention of nearly 100% over 1200 cycles and 340 cycles, respectively. Remarkably, CPL‐CuSe exhibits a high initial coulombic efficiency of 91.0% (SIBs) and 92.4% (PIBs), superior to most existing selenide anodes. A combination of in situ X‐ray diffraction and ex situ transmission electron microscopy tests fundamentally reveal the structural transition and phase evolution of CuSe, which shows a reversible conversion reaction for both cells, while the intermediate products are different due to the sluggish K+ insertion reaction.  相似文献   

9.
A hybrid nanoarchitecture aerogel composed of WS2 nanosheets and carbon nanotube‐reduced graphene oxide (CNT‐rGO) with ordered microchannel three‐dimensional (3D) scaffold structure was synthesized by a simple solvothermal method followed by freeze‐drying and post annealing process. The 3D ordered microchannel structures not only provide good electronic transportation routes, but also provide excellent ionic conductive channels, leading to an enhanced electrochemical performance as anode materials both for lithium‐ion batteries (LIBs) and sodium‐ion batteries (SIBs). Significantly, WS2/CNT‐rGO aerogel nanostructure can deliver a specific capacity of 749 mA h g?1 at 100 mA g?1 and a high first‐cycle coulombic efficiency of 53.4% as the anode material of LIBs. In addition, it also can deliver a capacity of 311.4 mA h g?1 at 100 mA g?1, and retain a capacity of 252.9 mA h g?1 at 200 mA g?1 after 100 cycles as the anode electrode of SIBs. The excellent electrochemical performance is attributed to the synergistic effect between the WS2 nanosheets and CNT‐rGO scaffold network and rational design of 3D ordered structure. These results demonstrate the potential applications of ordered CNT‐rGO aerogel platform to support transition‐metal‐dichalcogenides (i.e., WS2) for energy storage devices and open up a route for material design for future generation energy storage devices.  相似文献   

10.
Different from previously reported mechanical alloying route to synthesize Sn x P3, novel Sn4P3/reduced graphene oxide (RGO) hybrids are synthesized for the first time through an in situ low‐temperature solution‐based phosphorization reaction route from Sn/RGO. Sn4P3 nanoparticles combining with advantages of high conductivity of Sn and high capacity of P are homogenously loaded on the RGO nanosheets, interconnecting to form 3D mesoporous architecture nanostructures. The Sn4P3/RGO hybrid architecture materials exhibit significantly improved electrochemical performance of high reversible capacity, high‐rate capability, and excellent cycling performance as sodium ion batteries (SIBs) anode materials, showing an excellent reversible capacity of 656 mA h g?1 at a current density of 100 mA g?1 over 100 cycles, demonstrating a greatly enhanced rate capability of a reversible capacity of 391 mA h g?1 even at a high current density of 2.0 A g?1. Moreover, Sn4P3/RGO SIBs anodes exhibit a superior long cycling life, delivering a high capacity of 362 mA h g?1 after 1500 cycles at a high current density of 1.0 A g?1. The outstanding cycling performance and rate capability of these porous hierarchical Sn4P3/RGO hybrid anodes can be attributed to the advantage of porous structure, and the synergistic effect between Sn4P3 nanoparticles and RGO nanosheets.  相似文献   

11.
Sodium‐ion batteries (SIBs) are considered to be a promising alternative for large‐scale electricity storage. However, it is urgent to develop new anode materials with superior ultralong cycle life performance at high current rates. Herein, a low‐cost and large‐scalable sulfur‐doped carbon anode material that exhibits the best high‐rate cycle performance and the longest cycle life ever reported for carbon anodes is developed. The material delivers a reversible capacity of 142 mA h g?1 at a current rate up to 10 A g?1. After 10 000 cycles the capacity is remained at 126.5 mA h g?1; 89.1% of the initial value. Density functional theory computations demonstrate that the sulfur‐doped carbon has a strong binding affinity for sodium which promotes sodium storage. Meanwhile, the kinetics analysis identifies the capacitive charge storage as a large contributor to sodium storage, which favors ultrafast storage of sodium ions. These results demonstrate a new way to design carbon‐based SIBs anodes for next‐generation large‐scale electricity storage.  相似文献   

12.
A combined experimental and computational study of disodium pyridine‐2,5‐dicarboxylate (Na2PDC) is presented exploring the possibility of using it as a potential anode for organic sodium‐ion batteries. This electrode material can reversibly insert/release two Na cations per formula unit, resulting in high reversible capacity of 270 mA h g?1 (236 mA h g?1 after accounting for the contribution from Super P carbon) with excellent cyclability 225 mA h g?1, with retention of 83% capacity after 100 cycles, and good rate performance with reversible capacity of 138 mA h g?1 at a 5 C rate. The performance of disodium pyridine dicarboxylate is therefore found to be superior to that of the related and well investigated disodium terephthalate. The material shows two voltage plateaus at about 0.6 V up to Na2+1PDC and then 0.4 V up to full sodiation, Na2+2PDC. The first plateau is attributed to the coordination of inserted Na to nitrogen atoms with bond formation, i.e., a different mechanism from the terephthalate analog. The subsequent plateau is due to coordination to the carboxylic groups.  相似文献   

13.
The achievement of the superior rate capability and cycling stability is always the pursuit of sodium‐ion batteries (SIBs). However, it is mainly restricted by the sluggish reaction kinetics and large volume change of SIBs during the discharge/charge process. This study reports a facile and scalable strategy to fabricate hierarchical architectures where TiO2 nanotube clusters are coated with the composites of ultrafine MoO2 nanoparticles embedded in carbon matrix (TiO2@MoO2‐C), and demonstrates the superior electrochemical performance as the anode material for SIBs. The ultrafine MoO2 nanoparticles and the unique nanorod structure of TiO2@MoO2‐C help to decrease the Na+ diffusion length and to accommodate the accompanying volume expansion. The good integration of MoO2 nanoparticles into carbon matrix and the cable core role of TiO2 nanotube clusters enable the rapid electron transfer during discharge/charge process. Benefiting from these structure merits, the as‐made TiO2@MoO2‐C can deliver an excellent cycling stability up to 10 000 cycles even at a high current density of 10 A g?1. Additionally, it exhibits superior rate capacities of 110 and 76 mA h g?1 at high current densities of 10 and 20 A g?1, respectively, which is mainly attributed to the high capacitance contribution.  相似文献   

14.
Sodium‐ion batteries (SIBs) have a promising application prospect for energy storage systems due to the abundant resource. Amorphous carbon with high electronic conductivity and high surface area is likely to be the most promising anode material for SIBs. However, the rate capability of amorphous carbon in SIBs is still a big challenge because of the sluggish kinetics of Na+ ions. Herein, a three‐dimensional amorphous carbon (3DAC) with controlled porous and disordered structures is synthesized via a facile NaCl template‐assisted method. Combination of open porous structures of 3DAC, the increased disordered structures can not only facilitate the diffusion of Na+ ions but also enhance the reversible capacity of Na storage. When applied as anode materials for SIBs, 3DAC exhibits excellent rate capability (66 mA h g?1 at 9.6 A g?1) and high reversible capacity (280 mA h g?1 at a low current density of 0.03 A g?1). Moreover, the controlled porous structures by the NaCl template method provide an appropriate specific surface area, which contributes to a relatively high initial Coulombic efficiency of 75%. Additionally, the high‐rate 3DAC material is prepared via a green approach originating from low‐cost pitch and NaCl template, demonstrating an appealing development of carbon anode materials for SIBs.  相似文献   

15.
Rutile TiO2 inverse opals provide long cycle life and impressive structural stability when tested as anode materials for Li‐ion batteries. The capacity retention of TiO2 inverse opals (IOs) is greater than previously reported values for other rutile TiO2 nanomaterials, and the cycled crystalline phase and material interconnectivity is maintained over thousands of cycles. Consequently, this paper offers insight into the importance of optimizing the relationship between the structure and morphology on improving electrochemical performance of this abundant and low environmental impact material. TiO2 IOs show gradual capacity fading over 1000 and 5000 cycles, when cycled at specific currents of 75 and 450 mA g?1, respectively, while maintaining a high capacity and a stable overall cell voltage. TiO2 IOs achieve a reversible capacity of ≈170 and 140 mA h g?1 after the 100th and 1000th cycles, respectively, at a specific current of 75 mA g?1, corresponding to a capacity retention of ≈82.4%. The structural stability of the 3D IO phase from pristine rutile TiO2 to the conductive orthorhombic Li0.5TiO2 is remarkable and maintains its structural integrity. Image analysis conclusively shows that volumetric swelling is accommodated into the predefined pore space, and the IO periodicity remains constant and does not degrade over 5000 cycles.  相似文献   

16.
A simple ball‐milling method is used to synthesize a tin oxide‐silicon carbide/few‐layer graphene core‐shell structure in which nanometer‐sized SnO2 particles are uniformly dispersed on a supporting SiC core and encapsulated with few‐layer graphene coatings by in situ mechanical peeling. The SnO2‐SiC/G nanocomposite material delivers a high reversible capacity of 810 mA h g?1 and 83% capacity retention over 150 charge/discharge cycles between 1.5 and 0.01 V at a rate of 0.1 A g?1. A high reversible capacity of 425 mA h g?1 also can be obtained at a rate of 2 A g?1. When discharged (Li extraction) to a higher potential at 3.0 V (vs. Li/Li+), the SnO2‐SiC/G nanocomposite material delivers a reversible capacity of 1451 mA h g?1 (based on the SnO2 mass), which corresponds to 97% of the expected theoretical capacity (1494 mA h g?1, 8.4 equivalent of lithium per SnO2), and exhibits good cyclability. This result suggests that the core‐shell nanostructure can achieve a completely reversible transformation from Li4.4Sn to SnO2 during discharging (i.e., Li extraction by dealloying and a reversible conversion reaction, generating 8.4 electrons). This suggests that simple mechanical milling can be a powerful approach to improve the stability of high‐performance electrode materials involving structural conversion and transformation.  相似文献   

17.
Sodium‐ion batteries (SIBs) are considered to be promising energy storage devices for large‐scale grid storage application due to the vast earth‐abundance and low cost of sodium‐containing precursors. Designing and fabricating a highly efficient anode is one of the keys to improve the electrochemical performance of SIBs. Recently, fluoride‐based materials are found to show an exceptional anode function with high theoretical specific capacity, based on open‐framework structure enabling Na insertion and also exhibiting improved safety. However, fluoride‐based materials suffer from sluggish kinetics and poor capacity retention essentially due to low electric conductivity. Here, an efficient mixed‐conducting network offering fast pathways is proposed to address these issues. This network relies on titanium fluoride?carbon (TiF3?C) core/sheath nanofibers that are prepared via electrospinning. Such highly interconnected electrodes exhibit an enhanced and faster sodium storage performance. Carbon sheath nanofibers are key to an efficient ion‐ and electron‐conducting network that enable Na+/e? transfer to reach the nanosized TiF3. In addition, in‐situ‐converted Ti and NaF particles embedded in the carbon matrix allow high reversible interfacial storage. As a result, the TiF3?C core/sheath electrode exhibits a high capacity of 161 mAh g?1 at a high current density of 1000 mA g?1 over 2000 cycles.  相似文献   

18.
Uniform pomegranate‐like nanoclusters (NCs) organized by ultrafine transition metal oxide@nitrogen‐doped carbon (TMO@N–C) subunits (diameter ≈ 4 nm) are prepared on a large scale for the first time through a facile, novel, and one‐pot approach. Taking pomegranate‐like Fe3O4@N–C NCs as an example, this unique structure provides short Li+/electron diffusion pathways for electrochemical reactions, structural stability during cycling, and high electrical conductivity, leading to superior electrochemical performance. The resulting pomegranate‐like Fe3O4@N–C NCs possess a high specific capacity (1204.3 mA h g?1 at 0.5 A g?1 over 100 cycles), a stable cycle life (1063.0 mA h g?1 at 1 A g?1, 98.4% retention after 1000 cycles), and excellent rate capacities (606.0 mA h g?1 at 10 A g?1, 92.0% retention; 417.1 mA h g?1 at 20 A g?1, 91.7% retention after 1000 cycles).  相似文献   

19.
Na3V2(PO4)3 (NVP) is regarded as a promising cathode for advanced sodium‐ion batteries (SIBs) due to its high theoretical capacity and stable sodium (Na) super ion conductor (NASICON) structure. However, strongly impeded by its low electronic conductivity, the general NVP delivers undesirable rate capacity and fails to meet the demands for quick charge. Herein, a novel and facile synthesis of layer‐by‐layer NVP@reduced graphene oxide (rGO) nanocomposite is presented through modifying the surface charge of NVP gel precursor. The well‐designed layered NVP@rGO with confined NVP nanocrystal in between rGO layers offers high electronic and ionic conductivity as well as stable structure. The NVP@rGO nanocomposite with merely ≈3.0 wt% rGO and 0.5 wt% amorphous carbon, yet exhibits extraordinary electrochemical performance: a high capacity (118 mA h g?1 at 0.5 C attaining the theoretical value), a superior rate capability (73 mA h g?1 at 100 C and even up to 41 mA h g?1 at 200 C), ultralong cyclability (70.0% capacity retention after 15 000 cycles at 50 C), and stable cycling performance and excellent rate capability at both low and high operating temperatures. The proposed method and designed layer‐by‐layer active nanocrystal@rGO strategy provide a new avenue to create nanostructures for advanced energy storage applications.  相似文献   

20.
Inspired by the great success of graphite in lithium‐ion batteries, anode materials that undergo an intercalation mechanism are considered to provide stable and reversible electrochemical sodium‐ion storage for sodium‐ion battery (SIB) applications. Though MoS2 is a promising 2D material for SIBs, it suffers from deformation of its layered structure during repeated intercalation of Na+, resulting in undesirable electrochemical behaviors. In this study, vertically oriented MoS2 on nitrogenous reduced graphene oxide sheets (VO‐MoS2/N‐RGO) is presented with designed spatial geometries, including sheet density and height, which can deliver a remarkably high reversible capacity of 255 mA h g?1 at a current density of 0.2 A g?1 and 245 mA h g?1 at a current density of 1 A g?1, with a total fluctuation of 5.35% over 1300 cycles. These results are superior to those obtained with well‐developed hard carbon structures. Furthermore, a SIB full cell composed of the optimized VO‐MoS2/N‐RGO anode and a Na2V3(PO4)3 cathode reaches a specific capacity of 262 mA h g?1 (based on the anode mass) during 50 cycles, with an operated voltage range of 2.4 V, demonstrating the potentially rewarding SIB performance, which is useful for further battery development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号