首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Although perovskite solar cells (PSCs) have emerged as a promising alternative to widely used fossil fuels, the involved high‐temperature preparation of metal oxides as a charge transport layer in most state‐of‐the‐art PSCs has been becoming a big stumbling block for future low‐temperature and large‐scale R2R manufacturing process. Such an issue strongly encourages scientists to find new type of materials to replace metal oxides. Except for expensive PC61BM with unmanageable morphology and electrical properties, the past investigation on the development of low‐temperature‐processed and highly efficient electron transport layers (ETLs) has met some mixed success. In order to further enhance the performance of all‐solution‐processed PSCs, we propose a novel n‐type sulfur‐containing small molecule hexaazatrinaphtho[2,3‐c][1,2,5]thiadiazole (HATNT) with high electron mobility up to 1.73 × 10?2 cm2 V?1 s?1 as an ETL in planar heterojunction PSCs. A high power conversion efficiency of 18.1% is achieved, which is fully comparable with the efficiency from the control device fabricated with PC61BM as ETL. This superior performance mainly attributes from more effective suppression of charge recombination at the perovskite/HATNT interface than that between the perovskite and PC61 BM. Moreover, high electron mobility and strong interfacial interaction via S? I or S? Pb bonding should be also positive factors. Significantly, our results undoubtedly enable new guidelines in exploring n‐type organic small molecules for high‐performance PSCs.  相似文献   

2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
Achieving the highest power conversion efficiencies in bulk heterojunction organic solar cells requires a morphology that delivers electron and hole percolation pathways for optimized transport, plus sufficient donor:acceptor contact area for near unity charge transfer state formation. This is a significant structural challenge, particularly in semiconducting polymer:fullerene systems. This balancing act in the model high efficiency PTB7:PC70BM blend is studied by tuning the donor:acceptor ratio, with a view to understanding the recombination loss mechanisms above and below the fullerene transport percolation threshold. The internal quantum efficiency is found to be strongly correlated to the slower carrier mobility in agreement with other recent studies. Furthermore, second‐order recombination losses dominate the shape of the current density–voltage curve in efficient blend combinations, where the fullerene phase is percolated. However, below the charge transport percolation threshold, there is an electric‐field dependence of first‐order losses, which includes electric‐field‐dependent photogeneration. In the intermediate regime, the fill factor appears to be limited by both first‐ and second‐order losses. These findings provide additional basic understanding of the interplay between the bulk heterojunction morphology and the order of recombination in organic solar cells. They also shed light on the limitations of widely used transport models below the percolation threshold.  相似文献   

15.
Charge transport and recombination are studied for organic solar cells fabricated using blends of polymer poly[(4,4′‐bis(2‐ethylhexyl)dithieno[3,2‐b:2′,3′‐d]silole)‐2,6‐diyl‐alt‐(4,7‐bis(2‐thienyl)‐2,1,3‐benzothiadiazole)‐5,5′‐diyl] (Si‐PCPDTBT) with [6,6]‐phenyl‐C61‐butyric acid methyl ester (mono‐PCBM) and the bis‐adduct analogue of mono‐PCBM (bis‐PCBM). The photocurrent of Si‐PCPDTBT:bis‐PCBM devices shows a strong square root dependence on the effective applied voltage. From the relationship between the photocurrent and the light intensity, we found that the square‐root dependence of the photocurrent is governed by the mobility‐lifetime (μτ) product of charge carriers while space‐charge field effects are insignificant. The fill factor (FF) and short circuit current density (Jsc) of bis‐PCBM solar cells show a considerable increase with temperature as compared to mono‐PCBM solar cells. SCLC analysis of single carrier devices proofs that the mobility of both electrons and holes is significantly lowered when replacing mono‐PCBM with bis‐PCBM. The increased recombination in Si‐PCPDTBT:bis‐PCBM solar cells is therefore attributed to the low carrier mobilities, as the transient photovoltage measurements show that the carrier lifetime of devices are not significantly altered by using bis‐PCBM instead of mono‐PCBM.  相似文献   

16.
17.
In this work, it is demonstrated that bimolecular recombination depends on the distance that free carriers are required to travel in transit to the electrodes in bulk heterojunction organic solar cells. By employing semi‐transparent devices, the carrier transport distance can be controlled via the local light absorption profile with an appropriate choice of the illumination side and incident wavelength. Using a series of light intensity‐dependent measurements, bimolecular recombination is shown to depend on the distance electrons or holes are required to transit the active layer. This effect is demonstrated for three different bulk heterojunction blends, where the restrictive carrier that causes the onset of recombination is identified. The mobility‐lifetime products of the limiting carriers are also estimated using a simple model for carrier extraction, where similar values are obtained regardless of the absorption profile. Implications for 1‐sun performance are also discussed, which provide guidelines for fabricating devices with thicker active layers capable of maximizing light absorption without succumbing to recombination losses.  相似文献   

18.
Solution‐processed organic BHJ solar cells based on 3,6‐bis[5‐(benzofuran‐2‐yl)thiophen‐2‐yl]‐2,5‐bis(2‐ethylhexyl)pyrrolo[3,4‐c]pyrrole‐1,4‐dione (DPP(TBFu)2) or poly(3‐hexylthiophene) blended with [6,6]‐phenyl‐C60(70) ‐butyric acid methyl ester (PC60(70) BM) behave differently under various irradiation intensities. Small molecule‐based DPP(TBFu)2:PC60 BM solar cells show up to 5.2% power conversion efficiency and a high fill factor at low light intensity. At 100 mW cm?2 illumination, the efficiency and fill factor decrease, resulting in stronger power losses. Impedance spectroscopy at various light intensities reveals that high charge recombination is the cause of the low fill factor in DPP(TBFu)2:PC60 BM.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号