共查询到20条相似文献,搜索用时 15 毫秒
1.
Amino‐Functionalized Conjugated Polymer as an Efficient Electron Transport Layer for High‐Performance Planar‐Heterojunction Perovskite Solar Cells 下载免费PDF全文
Chen Sun Zhihong Wu Hin‐Lap Yip Hua Zhang Xiao‐Fang Jiang Qifan Xue Zhicheng Hu Zhanhao Hu Yan Shen Mingkui Wang Fei Huang Yong Cao 《Liver Transplantation》2016,6(5)
An amino‐functionalized copolymer with a conjugated backbone composed of fluorene, naphthalene diimide, and thiophene spacers (PFN‐2TNDI) is introduced as an alternative electron transport layer (ETL) to replace the commonly used [6,6]‐Phenyl‐C61‐butyric acid methyl ester (PCBM) in the p–i–n planar‐heterojunction organometal trihalide perovskite solar cells. A combination of characterizations including photoluminescence (PL), time‐resolved PL decay, Kelvin probe measurement, and impedance spectroscopy is used to study the interfacial effects induced by the new ETL. It is found that the amines on the polymer side chains not only can passivate the surface traps of perovskite to improve the electron extraction properties, they also can reduce the work function of the metal cathode by forming desired interfacial dipoles. With these dual functionalities, the resulted solar cells outperform those based on PCBM with power conversion efficiency (PCE) increased from 12.9% to 16.7% based on PFN‐2TNDI. In addition to the performance enhancement, it is also found that a wide range of thicknesses of the new ETL can be applied to produce high PCE devices owing to the good electron transport property of the polymer, which offers a better processing window for potential fabrication of perovskite solar cells using large‐area coating method. 相似文献
2.
Keqing Huang Yongyi Peng Yaxin Gao Jiao Shi Hengyue Li Xindi Mo Han Huang Yongli Gao Liming Ding Junliang Yang 《Liver Transplantation》2019,9(44)
Flexible perovskite solar cells (f‐PSCs) have attracted great attention due to their promising commercial prospects. However, the performance of f‐PSCs is generally worse than that of their rigid counterparts. Herein, it is found that the unsatisfactory performance of planar heterojunction (PHJ) f‐PSCs can be attributed to the undesirable morphology of electron transport layer (ETL), which results from the rough surface of the flexible substrate. Precise control over the thickness and morphology of ETL tin dioxide (SnO2) not only reduces the reflectance of the indium tin oxide (ITO) on polyethylene 2,6‐naphthalate (PEN) substrate and enhances photon collection, but also decreases the trap‐state densities of perovskite films and the charge transfer resistance, leading to a great enhancement of device performance. Consequently, the f‐PSCs, with a structure of PEN/ITO/SnO2/perovskite/Spiro‐OMeTAD/Ag, exhibit a power conversion efficiency (PCE) up to 19.51% and a steady output of 19.01%. Furthermore, the f‐PSCs show a robust bending resistance and maintain about 95% of initial PCE after 6000 bending cycles at a bending radius of 8 mm, and they present an outstanding long‐term stability and retain about 90% of the initial performance after >1000 h storage in air (10% relative humidity) without encapsulation. 相似文献
3.
Solar Cells: Amino‐Functionalized Conjugated Polymer as an Efficient Electron Transport Layer for High‐Performance Planar‐Heterojunction Perovskite Solar Cells (Adv. Energy Mater. 5/2016) 下载免费PDF全文
Chen Sun Zhihong Wu Hin‐Lap Yip Hua Zhang Xiao‐Fang Jiang Qifan Xue Zhicheng Hu Zhanhao Hu Yan Shen Mingkui Wang Fei Huang Yong Cao 《Liver Transplantation》2016,6(5)
4.
Graphene‐Based Electron Transport Layers in Perovskite Solar Cells: A Step‐Up for an Efficient Carrier Collection 下载免费PDF全文
Francesco Biccari Fabio Gabelloni Erica Burzi Massimo Gurioli Sara Pescetelli Antonio Agresti Antonio Esaú Del Rio Castillo Alberto Ansaldo Emmanuel Kymakis Francesco Bonaccorso Aldo Di Carlo Anna Vinattieri 《Liver Transplantation》2017,7(22)
The electron transport layer (ETL) plays a fundamental role in perovskite solar cells. Recently, graphene‐based ETLs have been proved to be good candidate for scalable fabrication processes and to achieve higher carrier injection with respect to most commonly used ETLs. Here, the effects of different graphene‐based ETLs in sensitized methylammonium lead iodide (MAPI) solar cells are experimentally studied. By means of time‐integrated and picosecond time‐resolved photoluminescence techniques, the carrier recombination dynamics in MAPI films embedded in different ETLs is investigated. Using graphene doped mesoporous TiO2 (G+mTiO2) with the addition of a lithium‐neutralized graphene oxide (GO‐Li) interlayer as ETL, it is found find that the carrier collection efficiency is increased by about a factor two with respect to standard mTiO2. Taking advantage of the absorption coefficient dispersion, the MAPI layer morphology is probed, along the thickness, finding that the MAPI embedded in the ETL composed by G+mTiO2 plus GO‐Li brings to a very good crystalline quality of the MAPI layer with a trap density about one order of magnitude lower than that found with the other ETLs. In addition, this ETL freezes MAPI at the tetragonal phase, regardless of the temperature. Graphene‐based ETLs can open the way to significant improvement of perovskite solar cells. 相似文献
5.
Perovskite solar cells (PSCs) have shown great potential for photovoltaic applications with their unprecedented power conversion efficiency advancement. Such devices generally have a complex structure design with high temperature processed TiO2 as the electron transport layer (ETL). Further careful design of device configuration to fully tap the potentials of perovskite materials is expected. Particularly, for the practical application of PSCs, it is crucial to simplify their device structures thus the associated manufacturing process and cost while maintaining their efficiency to be comparable with the conventional devices. But how simple is simple? ETL‐free PSCs promise the simplest structured, thus simple manufacturing processes and low cost large area PSCs in practical applications. They can also help the further exploration of the great potential of perovskite materials and understanding the working principle of PSCs. Within this review, the evolution of the PSC is outlined by discussing the recent advances in the simplification of device configuration and processes for cost effective, highly efficient, and robust PSCs, with a focus on ETL‐free PSCs. Their advancement, key issues, working mechanism, existing problems, and future performance enhancements. This review aims to promote the future development of low cost and robust ETL‐free PSCs toward more efficient power output. 相似文献
6.
Meng Li Zhao‐Kui Wang Ying‐Guo Yang Yun Hu Shang‐Lei Feng Jin‐Miao Wang Xing‐Yu Gao Liang‐Sheng Liao 《Liver Transplantation》2016,6(21)
The development of effective and stable hole transporting materials (HTMs) is very important for achieving high‐performance planar perovskite solar cells (PSCs). Herein, copper salts (cuprous thiocyanate (CuSCN) or cuprous iodide (CuI)) doped 2,2,7,7‐tetrakis(N,N‐di‐p‐methoxyphenylamine)‐9,9‐spirobifluorene (spiro‐OMeTAD) based on a solution processing as the HTM in PSCs is demonstrated. The incorporation of CuSCN (or CuI) realizes a p‐type doping with efficient charge transfer complex, which results in improved film conductivity and hole mobility in spiro‐OMeTAD:CuSCN (or CuI) composite films. As a result, the PCE is largely improved from 14.82% to 18.02% due to obvious enhancements in the cell parameters of short‐circuit current density and fill factor. Besides the HTM role, the composite film can suppress the film aggregation and crystallization of spiro‐OMeTAD films with reduced pinholes and voids, which slows down the perovskite decomposition by avoiding the moisture infiltration to some extent. The finding in this work provides a simple method to improve the efficiency and stability of planar perovskite solar cells. 相似文献
7.
8.
A Printable Organic Electron Transport Layer for Low‐Temperature‐Processed,Hysteresis‐Free,and Stable Planar Perovskite Solar Cells 下载免费PDF全文
Jinho Lee Junghwan Kim Chang‐Lyoul Lee Geunjin Kim Tae Kyun Kim Hyungcheol Back Suhyun Jung Kilho Yu Soonil Hong Seongyu Lee Seok Kim Soyeong Jeong Hongkyu Kang Kwanghee Lee 《Liver Transplantation》2017,7(15)
Despite recent breakthroughs in power conversion efficiencies (PCEs), which have resulted in PCEs exceeding 22%, perovskite solar cells (PSCs) still face serious drawbacks in terms of their printability, reliability, and stability. The most efficient PSC architecture, which is based on titanium dioxide as an electron transport layer, requires an extremely high‐temperature sintering process (≈500 °C), reveals hysterical discrepancies in the device measurement, and suffers from performance degradation under light illumination. These drawbacks hamper the practical development of PSCs fabricated via a printing process on flexible plastic substrates. Herein, an innovative method to fabricate low‐temperature‐processed, hysteresis‐free, and stable PSCs with a large area up to 1 cm2 is demonstrated using a versatile organic nanocomposite that combines an electron acceptor and a surface modifier. This nanocomposite forms an ideal, self‐organized electron transport layer (ETL) via a spontaneous vertical phase separation, which leads to hysteresis‐free, planar heterojunction PSCs with stabilized PCEs of over 18%. In addition, the organic nanocomposite concept is successfully applied to the printing process, resulting in a PCE of over 17% in PSCs with printed ETLs. 相似文献
9.
Improving the Performance and Stability of Inverted Planar Flexible Perovskite Solar Cells Employing a Novel NDI‐Based Polymer as the Electron Transport Layer 下载免费PDF全文
Hong Il Kim Myeong‐Jong Kim Kyoungwon Choi Chaesung Lim Yun‐Hi Kim Soon‐Ki Kwon Taiho Park 《Liver Transplantation》2018,8(16)
A new naphthalene diimide (NDI)‐based polymer with strong electron withdrawing dicyanothiophene (P(NDI2DT‐TTCN)) is developed as the electron transport layer (ETL) in place of the fullerene‐based ETL in inverted perovskite solar cells (Pero‐SCs). A combination of characterization techniques, including atomic force microscopy, scanning electron microscopy, grazing‐incidence wide‐angle X‐ray scattering, near‐edge X‐ray absorption fine‐structure spectroscopy, space‐charge‐limited current, electrochemical impedance spectroscopy, photoluminescence (PL), and time‐resolved PL decay, is used to demonstrate the interface phenomena between perovskite and P(NDI2DT‐TTCN) or [6,6]‐phenyl‐C61‐butyric acid methyl ester (PCBM). It is found that P(NDI2DT‐TTCN) not only improves the electron extraction ability but also prevents ambient condition interference by forming a hydrophobic ETL surface. In addition, P(NDI2DT‐TTCN) has excellent mechanical stability compared to PCBM in flexible Pero‐SCs. With these improved functionalities, the performance of devices based on P(NDI2DT‐TTCN) significantly outperform those based on PCBM from 14.3 to 17.0%, which is the highest photovoltaic performance with negligible hysteresis in the field of polymeric ETLs. 相似文献
10.
Chuantian Zuo Andrew D. Scully Doojin Vak Wenliang Tan Xuechen Jiao Christopher R. McNeill Dechan Angmo Liming Ding Mei Gao 《Liver Transplantation》2019,9(4)
2D organic–inorganic hybrid Ruddlesden–Popper perovskites have emerged recently as candidates for the light‐absorbing layer in solar cell technology due largely to their impressive operational stability compared with their 3D‐perovskite counterparts. The methods reported to date for the preparation of efficient 2D perovksite layers for solar cells involve a nonscalable spin‐coating step. In this work, a facile, spin‐coating‐free, directly scalable drop‐cast method is reported for depositing precursor solutions that self‐assemble into highly oriented, uniform 2D‐perovskite films in air, yielding perovskite solar cells with power conversion efficiencies (PCE) of up to 14.9% (certified PCE of 14.33% ± 0.34 at 0.078 cm2). This is the highest PCE to date for a solar cell with 2D‐perovskite layers fabricated by nonspin‐coating method. The PCEs of the cells display no evidence of degradation after storage in a nitrogen glovebox for more than 5 months. 2D‐perovskite layer deposition using a slot‐die process is also investigated for the first time. Perovskite solar cells fabricated using batch slot‐die coating on a glass substrate or R2R slot‐die coating on a flexible substrate produced PCEs of 12.5% and 8.0%, respectively. 相似文献
11.
Efficient and Hysteresis‐Free Perovskite Solar Cells Based on a Solution Processable Polar Fullerene Electron Transport Layer 下载免费PDF全文
Ying‐Chiao Wang Xiaodong Li Liping Zhu Xiaohui Liu Wenjun Zhang Junfeng Fang 《Liver Transplantation》2017,7(21)
Fullerene derivatives, which possess extraordinary geometric shapes and high electron affinity, have attracted significant attention for thin film technologies. This study demonstrates an important photovoltaic application using carboxyl‐functionalized carbon buckyballs, C60 pyrrolidine tris‐acid (CPTA), to fabricate electron transport layers (ETLs) that replace traditional metal oxide‐based ETLs in efficient and stable n‐i‐p‐structured planar perovskite solar cells (PSCs). The uniform CPTA film is covalently anchored onto the surface of indium tin oxide (ITO), significantly suppressing hysteresis and enhancing the flexural strength in the CPTA‐modified PSCs. Moreover, solution‐processable CPTA‐based ETLs also enable the fabrication of lightweight flexible PSCs. The maximum‐performing device structures composed of ITO/CPTA/CH3NH3PbI3/2,2′,7,7′‐tetrakis‐(N,N‐di‐p‐methoxyphenylamine)‐9,9′‐spirobifluorene (spiro‐OMeTAD)/Au yield power conversion efficiencies of more than 18% on glass substrates and up to 17% on flexible substrates. These results indicate that the CPTA layers provide new opportunities for solution‐processed organic ETLs by substantially simplifying the procedure for fabricating PSCs for portable applications. 相似文献
12.
13.
Il Jeon Jungjin Yoon Unsoo Kim Changsoo Lee Rong Xiang Ahmed Shawky Jun Xi Junseop Byeon Hyuck Mo Lee Mansoo Choi Shigeo Maruyama Yutaka Matsuo 《Liver Transplantation》2019,9(27)
Double‐walled carbon nanotubes are between single‐walled carbon nanotubes and multiwalled carbon nanotubes. They are comparable to single‐walled carbon nanotubes with respect to the light optical density, but their mechanical stability and solubility are higher. Exploiting such advantages, solution‐processed transparent electrodes are demonstrated using double‐walled carbon nanotubes and their application to perovskite solar cells is also demonstrated. Perovskite solar cells which harvest clean solar power have attracted a lot of attention as a next‐generation renewable energy source. However, their eco‐friendliness, cost, and flexibility are limited by the use of transparent oxide conductors, which are inflexible, difficult to fabricate, and made up of expensive rare metals. Solution‐processed double‐walled carbon nanotubes can replace conventional transparent electrodes to resolve such issues. Perovskite solar cells using the double‐walled carbon nanotube transparent electrodes produce an operating power conversion efficiency of 17.2% without hysteresis. As the first solution‐processed electrode‐based perovskite solar cells, this work will pave the pathway to the large‐size, low‐cost, and eco‐friendly solar devices. 相似文献
14.
Pengchen Zhu Shuai Gu Xin Luo Yuan Gao Songlin Li Jia Zhu Hairen Tan 《Liver Transplantation》2020,10(3)
The performance of perovskite solar cells is sensitive to detrimental defects, which are prone to accumulate at the interfaces and grain boundaries of bulk perovskite films. Defect passivation at each region will lead to reduced trap density and thus less nonradiative recombination loss. However, it is challenging to passivate defects at both the grain boundaries and the bottom charge transport layer/perovskite interface, mainly due to the solvent incompatibility and complexity in perovskite formation. Here SnO2‐KCl composite electron transport layer (ETL) is utilized in planar perovskite solar cells to simultaneously passivate the defects at the ETL/perovskite interface and the grain boundaries of perovskite film. The K and Cl ions at the ETL/perovskite interface passivate the ETL/perovskite contact. Meanwhile, K ions from the ETL can diffuse through the perovskite film and passivate the grain boundaries. An enhancement of open‐circuit voltage from 1.077 to 1.137 V and a corresponding power conversion efficiency increasing from 20.2% to 22.2% are achieved for the devices using SnO2‐KCl composite ETL. The composite ETL strategy reported herein provides an avenue for defect passivation to further increase the efficiency of perovskite solar cells. 相似文献
15.
The Duong Huyen Pham Teng Choon Kho Pheng Phang Kean Chern Fong Di Yan Yanting Yin Jun Peng Md Arafat Mahmud Saba Gharibzadeh Bahram Abdollahi Nejand Ihteaz M. Hossain Motiur Rahman Khan Naeimeh Mozaffari YiLiang Wu Heping Shen Jianghui Zheng Haoxin Mai Wensheng Liang Chris Samundsett Matthew Stocks Keith McIntosh Gunther G. Andersson Uli Lemmer Bryce S. Richards Ulrich W. Paetzold Anita Ho‐Ballie Yun Liu Daniel Macdonald Andrew Blakers Jennifer Wong‐Leung Thomas White Klaus Weber Kylie Catchpole 《Liver Transplantation》2020,10(9)
Mixed‐dimensional perovskite solar cells combining 3D and 2D perovskites have recently attracted wide interest owing to improved device efficiency and stability. Yet, it remains unclear which method of combining 3D and 2D perovskites works best to obtain a mixed‐dimensional system with the advantages of both types. To address this, different strategies of combining 2D perovskites with a 3D perovskite are investigated, namely surface coating and bulk incorporation. It is found that through surface coating with different aliphatic alkylammonium bulky cations, a Ruddlesden–Popper “quasi‐2D” perovskite phase is formed on the surface of the 3D perovskite that passivates the surface defects and significantly improves the device performance. In contrast, incorporating those bulky cations into the bulk induces the formation of the pure 2D perovskite phase throughout the bulk of the 3D perovskite, which negatively affects the crystallinity and electronic structure of the 3D perovskite framework and reduces the device performance. Using the surface‐coating strategy with n‐butylammonium bromide to fabricate semitransparent perovskite cells and combining with silicon cells in four‐terminal tandem configuration, 27.7% tandem efficiency with interdigitated back contact silicon bottom cells (size‐unmatched) and 26.2% with passivated emitter with rear locally diffused silicon bottom cells is achieved in a 1 cm2 size‐matched tandem. 相似文献
16.
Improved Performance and Reliability of p‐i‐n Perovskite Solar Cells via Doped Metal Oxides 下载免费PDF全文
Perovskite photovoltaics (PVs) have attracted attention because of their excellent power conversion efficiency (PCE). Critical issues related to large‐area PV performance, reliability, and lifetime need to be addressed. Here, it is shown that doped metal oxides can provide ideal electron selectivity, improved reliability, and stability for perovskite PVs. This study reports p‐i‐n perovskite PVs with device areas ranging from 0.09 cm2 to 0.5 cm2 incorporating a thick aluminum‐doped zinc oxide (AZO) electron selective contact with hysteresis‐free PCE of over 13% and high fill factor values in the range of 80%. AZO provides suitable energy levels for carrier selectivity, neutralizes the presence of pinholes, and provides intimate interfaces. Devices using AZO exhibit an average PCE increase of over 20% compared with the devices without AZO and maintain the high PCE for the larger area devices reported. Furthermore, the device stability of p‐i‐n perovskite solar cells under the ISOS‐D‐1 is enhanced when AZO is used, and maintains 100% of the initial PCE for over 1000 h of exposure when AZO/Au is used as the top electrode. The results indicate the importance of doped metal oxides as carrier selective contacts to achieve reliable and high‐performance long‐lived large‐area perovskite solar cells. 相似文献
17.
Self‐Doped,n‐Type Perylene Diimide Derivatives as Electron Transporting Layers for High‐Efficiency Polymer Solar Cells 下载免费PDF全文
Zhenfeng Wang Nannan Zheng Wenqiang Zhang He Yan Zengqi Xie Yuguang Ma Fei Huang Yong Cao 《Liver Transplantation》2017,7(15)
Perylene diimide (PDI) with high electron affinities are promising candidates for applications in polymer solar cells (PSCs). In addition, the strength of π‐deficient backbones and end‐groups in an n‐type self‐dopable system strongly affects the formed end‐group‐induced electronic interactions. Herein, a series of amine/ammonium functionalized PDIs with excellent alcohol solubility are synthesized and employed as electron transporting layers (ETLs) in PSCs. The electron transfer properties of the resulting PDIs are dramatically tuned by different end‐groups and π‐deficient backbones. Notably, electron transfer is observed directly in solution in self‐doped PDIs for the first time. A significantly enhanced power conversion efficiency of 10.06% is achieved, when applying the PDIs as ETLs in PTB7‐Th:PC71BM‐based PSCs. These results demonstrate the potential of n‐type organic semiconductors with stable n‐type doping capability and facile solution processibility for future applications of energy transition devices. 相似文献
18.
Organic–inorganic halide perovskites are promising materials for next‐generation photovoltaic device due to their attractive photoelectrical properties such as strong light absorption, high carrier mobility, and tunable bandgap. Generally, perovskite solar cells require carrier transport layers (CTL) to provide a built‐in electric field and reduce the recombination rate. However, the construction of suitable electron‐ and hole‐transport layers is not cost effective, impairing the commercial application of the devices. An n–p perovskite homojunction absorber with a graded bandgap is developed by introducing a three‐step dynamic spin‐coating strategy and variable valence Sn elements. The bandgap of the perovskite absorber is gradually manipulated from 1.53 eV (the bottom) to 1.27 eV (the top). The electronic behavior is also transformed from n‐type (excess PbI2, the bottom) to p‐type (Sn vacancy, the top) in a very short distance (50 nm). This designed perovskite homojunction electronic structure not only expands the light harvesting range from 800 to 970 nm which provides potential to break the PCE limits, but also promotes oriented carrier transportation and weakens the dependence on CTL. The demonstrated asymmetrical active layer shows a brand‐new approach to simplify the device structure and boost the performance of CTL‐free perovskite solar cells. 相似文献
19.
20.
Leonidas C. Palilis Maria Vasilopoulou Apostolis Verykios Anastasia Soultati Ermioni Polydorou Panagiotis Argitis Dimitris Davazoglou Abd. Rashid bin Mohd Yusoff Mohammad Khaja Nazeeruddin 《Liver Transplantation》2020,10(27)
As organic solar cells (OSCs) and perovskite solar cells (PVSCs) move closer to commercialization, further efforts toward optimizing both cell efficiency and stability are needed. As interfaces strongly affect device performance and degradation processes, interfacial engineering by employing various materials as hole transport layers (HTLs) and electron transport layers (ETLs) has been a very active field of research in OSCs and PVSCs. Among them, inorganic materials exhibit significant advantages in promoting device performance due to their excellent charge transporting properties and intrinsic thermal and chemical robustness. In this review, an extensive overview is provided of inorganic semiconductors such as copper‐based ones with emphasis on copper iodide and copper thiocyanate, transition metal chalcogenides, nitrides and carbides as well as hybrid materials based on these inorganic compounds that have been recently employed as HTLs and ETLs in OSCs and PVSCs. Following a short discussion of the main optoelectronic and physical properties that interfacial materials used as HTLs and ETLs should possess, the functionalities of the aforementioned materials as interfacial, charge transport, layers in OSCs and PVSCs are discussed in depth. It is concluded by providing guidelines for further developments that could significantly extend the implementation of these materials in solar cells. 相似文献