首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To advance polymer solar cells (PSCs) toward real‐world applications, it is crucial to develop materials that are compatible with a low‐cost large‐scale manufacturing technology. In this context, a practically useful polymer should fulfill several critical requirements: the capability to provide high power conversion efficiencies (PCEs) via low‐cost fabrication using environmentally friendly solvents under mild thermal conditions, resulting in an active layer that is thick enough to minimize defects in large‐area films. Here, the development of new photovoltaic polymers is reported through rational molecular design to meet these requirements. Benzodithiophene (BDT)‐difluorobenzoxadiazole (ffBX)‐2‐decyltetradecyl (DT), a wide‐bandgap polymer based on ffBX and BDT emerges as the first example that fulfills the qualifications. When blended with a low‐cost acceptor (C60‐fullerene derivative), BDT‐ffBX‐DT produces a PCE of 9.4% at active layer thickness over 250 nm. BDT‐ffBX‐DT devices can be fabricated from nonhalogenated solvents at low processing temperature. The success of BDT‐ffBX‐DT originates from its appropriate electronic structure and charge transport characteristics, in combination with a favorable face‐on orientation of the polymer backbone in blends, and the ability to form proper phase separation morphology with a fibrillar bicontinuous interpenetrating network in bulk‐heterojunction films. With these characteristics, BDT‐ffBX‐DT represents a meaningful step toward future everyday applications of polymer solar cells.  相似文献   

2.
Despite the potential of ternary polymer solar cells (PSCs) to improve photocurrents, ternary architecture is not widely utilized for PSCs because its application has been shown to reduce fill factor (FF). In this paper, a novel technique is reported for achieving highly efficient ternary PSCs without this characteristic sharp decrease in FF by matching the highest occupied molecular orbital (HOMO) energy levels of two donor polymers. Our ternary device—made from a blend of wide‐bandgap poly[4,8‐bis(2‐ethylhexyloxy)benzo[1,2‐b:4,5‐b′]dithiophene‐alt‐2,5‐dioctyl‐4,6‐di(thiophen‐2‐yl)pyrrolo[3,4‐c]pyrrole‐1,3(2H,5H)‐dione) (PBDT‐DPPD) polymer, narrow‐bandgap poly[4,8‐bis[5‐(2‐ethylhexyl)‐2‐thienyl]benzo[1,2‐b:4,5‐b′]dithiophene‐alt‐(4‐(2‐ethylhexyl)‐3‐fluorothieno[3,4‐b]thiophene‐)‐2‐carboxylate‐2‐ 6‐diyl)] (PTB7‐Th) polymer, and [6,6]‐phenyl C70‐butyric acid methyl ester (PC70BM)—exhibits a maximum power conversion efficiency of 10.42% with an open‐circuit voltage of 0.80 V, a short‐circuit current of 17.61 mA cm?2, and an FF of 0.74. In addition, this concept is extended to quaternary PSCs made by using three different donor polymers with similar HOMO levels. Interestingly, the quaternary PSCs also yield a good FF (≈0.70)—similar to those of corresponding binary PSCs. This study confirms that the HOMO levels of the polymers used on the photoactive layer of PSCs are a crucial determinant of a high FF.  相似文献   

3.
Two novel narrow bandgap π‐conjugated polymers based on naphtho[1,2‐c:5,6‐c′]bis([1,2,5]thiadiazole) (NT) unit are developed, which contain the thiophene or benzodithiophene flanked with alkylthiophene as the electron‐donating segment. Both copolymers exhibit strong aggregations both in solution and as thin films. The resulting copolymers with higher molecular weight show higher photovoltaic performance by virtue of the enhanced short‐circuit current densities and fill factors, which can be attributed to their higher absorptivity and formation of more favorable film morphologies. Polymer solar cells (PSCs) fabricated with the copolymer PNTT achieve remarkable power conversion efficiencies (PCEs) > 11% based on both conventional and inverted structures at the photoactive layer thickness of 280 nm, which is the highest value so far observed from NT‐based copolymers. Of particular interest is that the device performances are insensitive to the thickness of the photoactive layer, for which the PCEs > 10% can be achieved with film thickness ranging from 150 to 660 nm, and the PCE remains >9% at the thickness over 1 µm. These findings demonstrate that these NT‐based copolymers can be promising candidates for the construction of thick film PSCs toward low‐cost roll‐to‐roll processing technology.  相似文献   

4.
5.
The development of nonfullerene acceptors has brought polymer solar cells into a new era. Maximizing the performance of nonfullerene solar cells needs appropriate polymer donors that match with the acceptors in both electrical and morphological properties. So far, the design rationales for polymer donors are mainly borrowed from fullerene‐based solar cells, which are not necessarily applicable to nonfullerene solar cells. In this work, the influence of side chain length of polymer donors based on a set of random terpolymers PTAZ‐TPD10‐Cn on the device performance of polymer solar cells is investigated with three different acceptor materials, i.e., a fullerene acceptor [70]PCBM, a polymer acceptor N2200, and a fused‐ring molecular acceptor ITIC. Shortening the side chains of polymer donors improves the device performance of [70]PCBM‐based devices, but deteriorates the N2200‐ and ITIC‐based devices. Morphology studies unveil that the miscibility between donor and acceptor in blend films depends on the side chain length of polymer donors. Upon shortening the side chains of the polymer donors, the miscibility between the donor and acceptor increases for the [70]PCBM‐based blends, but decreases for the N2200‐ and ITIC‐based blends. These findings provide new guidelines for the development of polymer donors to match with emerging nonfullerene acceptors.  相似文献   

6.
The emerging field of tandem polymer solar cells (TPSCs) enables a feasible approach to deal with the fundamental losses associated with single‐junction polymer solar cells (PSCs) and provides the opportunity to propel their overall performance. Additionally, the rational selection of appropriate subcell photoactive polymers with complementary absorption profiles and optimal thicknesses to achieve balanced photocurrent generation are very important issues which must be addressed in order to realize paramount device performance. Here, two side chain fluorinated wide‐bandgap π‐conjugated polymers P1 (2F) and P2 (4F) in TPSCs have been used. These π‐conjugated polymers have high absorption coefficients and deep highest occupied molecular orbitals which lead to high open‐circuit voltages (Voc) of 0.91 and 1.00 V, respectively. Using these π‐conjugated polymers, TPSCs have been successfully fabricated by combining P1 or P2 as front cells with PTB7‐Th as back cells. The optimized TPSCs deliver outstanding power conversion efficiencies of 11.42 and 10.05%, with high Voc's of 1.64 and 1.72 V, respectively. These results are analyzed by balance of charge mobilities, and optical and electrical modeling is combined to demonstrate simultaneous improvement in all photovoltaic parameters in TPSCs.  相似文献   

7.
Currently, constructing ternary organic solar cells (OSCs) and developing nonfullerene small molecule acceptors (n‐SMAs) are two pivotal avenues to enhance the device performance. However, introducing n‐SMAs into the ternary OSCs to construct thick layer device is still a challenge due to their inferior charge transport property and unclear aggregation mechanism. In this work, a novel wide band gap copolymer 4,8‐bis(4,5‐dioctylthiophen‐2‐yl) benzo[1,2‐b:4,5‐b′]dithiophene‐2,6‐diyl‐alt‐N‐(2‐hexyldecyl)‐5,5′‐bis(thiophen‐2‐yl)‐2,2′‐bithiophene‐3,3′‐dicarboximide (PDOT) is designed and blend of PDOT:PC71BM achieves a power conversion efficiency (PCE) of 9.5% with active layer thickness over 200 nm. The rationally selected n‐SMA based on a bulky seven‐ring fused core (indacenodithieno[3,2‐b]thiophene) end‐capped with 2‐(3‐oxo‐2,3‐dihydroinden‐1‐ylidene) malononitrile groups (ITIC) is introduced into the host binary PDOT:PC71BM system to extend the absorption range and reduce the photo energy loss. After fully investigating the morphology evolution of the ternary blends, the different aggregation behavior of n‐SMAs with respect to their fullerene counterpart is revealed and the adverse effect of introducing n‐SMAs on charge transport is successfully avoided. The ternary OSC delivers a PCE of 11.2% with a 230 nm thick active layer, which is among the highest efficiencies of thick layer OSCs. The results demonstrate the feasibility of using n‐SMAs to construct a thick layer ternary device for the first time, which will greatly promote the efficiency of thick layer ternary devices.  相似文献   

8.
A series of low‐bandgap polymers based on thienyl benzodithiophene (BDTT) and furan‐substituted diketopyrrolopyrrole (FDPP) units with different side chains are presented. By replacing the branched ethylhexyl group on the FDPP unit with linear side chains, the structural order and carrier mobility of the modified polymers are enhanced accordingly. The power conversion efficiencies (PCE) of single‐junction devices based on polymers of this series are improved from ≈5% to ≈7%. More importantly, devices made from the modified polymers show excellent photovoltaic performance with a thick active layer of up to 360 nm, a very promising characteristic for the industrial implementation of polymer solar cell devices.  相似文献   

9.
Developing efficient organic solar cells (OSCs) with relatively thick active layer compatible with the roll to roll large area printing process is an inevitable requirement for the commercialization of this field. However, typical laboratory OSCs generally exhibit active layers with optimized thickness around 100 nm and very low thickness tolerance, which cannot be suitable for roll to roll process. In this work, high performance of thick‐film organic solar cells employing a nonfullerene acceptor F–2Cl and a polymer donor PM6 is demonstrated. High power conversion efficiencies (PCEs) of 13.80% in the inverted structure device and 12.83% in the conventional structure device are achieved under optimized conditions. PCE of 9.03% is obtained for the inverted device with active layer thickness of 500 nm. It is worth noting that the conventional structure device still maintains the PCE of over 10% when the film thickness of the active layer is 600 nm, which is the highest value for the NF‐OSCs with such a large active layer thickness. It is found that the performance difference between the thick active layer films based conventional and inverted devices is attributed to their different vertical phase separation in the active layers.  相似文献   

10.
Highly crystalline conjugated polymers represent a key material for producing high‐performance thick‐active‐layer polymer solar cells (PSCs). However, despite their potential, a limited number of crystalline polymers are used in PSCs because of the lack of highly coplanar acceptor building blocks and insufficient light absorptivity (α < 105) of most donor (D)–acceptor (A)‐type polymers. This study reports a series of novel 3,7‐di(thiophen‐2‐yl)‐1,5‐naphthyridine‐2,6‐dione (NTDT) acceptor‐based conjugated polymers, PNTDT‐2T, PNTDT‐TT, and PNTDT‐2F2T, synthesized with 2,2′‐bithiophene (2T), thieno[3,2‐b]thiophene (TT), and 3,3′‐difluoro‐2,2′‐bithiophene (2F2T) donor units, respectively. PNTDT‐2F2T exhibits superior polymer crystallinity and a much higher absorption coefficient than those of PNTDT‐2T or PNTDT‐TT because of adequate matching between highly coplanar A (NTDT) and D (2F2T) building blocks. A bulk heterojunction solar cell based on PNTDT‐2F2T exhibits a power conversion efficiency of up to 9.63%, with a high short circuit current of 18.80 mA cm?2 and fill factor of 0.70, when a thick active layer (>200 nm) is used, without postfabrication hot processing. The findings demonstrate that the polymer crystallinity and absorption coefficient can be effectively controlled by selecting appropriate D and A building blocks, and that NTDT is a novel and versatile A building block for highly efficient thick‐active‐layer PSCs.  相似文献   

11.
Highly efficient tandem and semitransparent (ST) polymer solar cells utilizing the same donor polymer blended with [6,6]‐phenyl‐C61‐butyric acid methyl ester (PC61BM) and [6,6]‐phenyl‐C71‐butyric acid methyl ester (PC71BM) as active layers are demonstrated. A high power conversion efficiency (PCE) of 8.5% and a record high open‐circuit voltage of 1.71 V are achieved for a tandem cell based on a medium bandgap polymer poly(indacenodithiophene‐co‐phananthrene‐quinoxaline) (PIDT‐phanQ). In addition, this approach can also be applied to a low bandgap polymer poly[2,6‐(4,4‐bis(2‐ethylhexyl)‐4H‐cyclopenta[2,1‐b;3,4‐b′]dithiophene)‐alt‐4,7‐(5‐fluoro‐2,1,3‐benzothia‐diazole)] (PCPDTFBT), and PCEs up to 7.9% are achieved. Due to the very thin total active layer thickness, a highly efficient ST tandem cell based on PIDT‐phanQ exhibits a high PCE of 7.4%, which is the highest value reported to date for a ST solar cell. The ST device also possesses a desirable average visible transmittance (≈40%) and an excellent color rendering index (≈100), permitting its use in power‐generating window applications.  相似文献   

12.
A family of porphyrins and benzoporphyrins bearing phenyl, thiophenyl, or bithiophenyl groups at their meso‐positions are synthesized and systematically investigated for their potential use in bulk heterojunction solar cells (BHJ‐SCs). Comparative studies of these compounds show that the introduction of the thiophenyl and bithiophenyl groups, and the extension of the porphyrin π‐conjugated system significantly affect both photophysical and electrochemical properties. Binary conventional and ternary converted BHJ‐SCs based on these compounds are fabricated and studied. Results show that remarkable enhancement of the device efficiency is achieved by using the thiophene‐containing benzoporphyrin derivatives as additives for a poly(3‐hexylthiophene) (P3HT):phenyl‐C61‐butyric acid methyl ester blend in the inverted BHJ‐SCs. The optimum BHJ‐SC exhibits a maximum energy conversion efficiency of 4.3%, corresponding to 19% enhancement of the conversion efficiency as compared with the benchmark BHJ‐SCs.  相似文献   

13.
To explore the advantages of emerging all‐polymer solar cells (all‐PSCs), growing efforts have been devoted to developing matched donor and acceptor polymers to outperform fullerene‐based PSCs. In this work, a detailed characterization and comparison of all‐PSCs using a set of donor and acceptor polymers with both conventional and inverted device structures is performed. A simple method to quantify the actual composition and light harvesting contributions from the individual donor and acceptor is described. Detailed study on the exciton dissociation and charge recombination is carried out by a set of measurements to understand the photocurrent loss. It is unraveled that fine‐tuned crystallinity of the acceptor, matched donor and acceptor with complementary absorption and desired energy levels, and device architecture engineering can synergistically boost the performance of all‐PSCs. As expected, the PBDTTS‐FTAZ:PNDI‐T10 all‐PSC attains a high and stable power conversion efficiency of 6.9% without obvious efficiency decay in 60 d. This work demonstrates that PNDI‐T10 can be a potential alternative acceptor polymer to the widely used acceptor N2200 for high‐performance and stable all‐PSCs.  相似文献   

14.
15.
A novel crosslinkable aminoalkyl‐functionalized polymer, poly[9,9‐bis(6‐(N,N‐diethylamino)propyl)fluorene‐alt‐9,9‐bis(hex‐5‐en‐1‐yl)‐fluorene] (PFN‐V), is designed and synthesized. The resulting polymer can be rapidly crosslinked by UV‐curing within 5 s in a nearly quantitative yield based on the “click” chemistry of alkyene end‐groups of the PFN‐V side chains and the addition of 1,8‐octanedithiol. The crosslinked PFN‐V film exhibits excellent solvent resistance property and can act as effective cathode interlayer to modify the indium tin oxide (ITO) electrode, which can thus facilitate the formation of Ohmic contact between cathode and active layer. The surface energy of PFN‐V is quite comparable to that of PC71BM, which is favorable for the formation of vertical phase separation in the bulk heterojunction film that can facilitate extraction of charges as verified by transient photocurrent measurements. Based on the resulting PFN‐V as the cathode interlayer, the fabricated polymer solar cells with inverted device structure show a remarkable enhancement of power conversion efficiency from 3.11% for the control device to 9.18% for PFN‐V based device. These observations indicate that the synthesized PFN‐V can be a promising crosslinked copolymer as the cathode interlayer for high performance polymer solar cells.  相似文献   

16.
The effects of cathode modification by a conjugated polymer interlayer PFPA1 on the performance of reversed organic solar cells (substrate/cathode/active layer/transparent anode) based on different active material systems and different substrate electrodes are systematically investigated. A reduction of the work function irrespective of the substrate cathode used is observed upon the deposition of the PFPA1 interlayer, which is further related to an improved built‐in electric field and open‐circuit voltage. The amphiphilic character of the PFPA1 interlayer alters the surface energy of the substrate cathode, leading to the formation of a better active layer morphology aiding efficient exciton dissociation and photocurrent extraction in the modified solar cells. Hence, internal quantum efficiency is found to be significantly higher than that of their unmodified counterparts, while optically, the modified and unmodified solar cells are identical. Moreover, the deep highest occupied molecular orbital (HOMO) of the PFPA1 interlayer improves the selectivity for all investigated substrate cathodes, thus enhancing the fill factor.  相似文献   

17.
A new weak electron‐deficient building block, bis(2‐ethylhexyl) 2,5‐bis(5‐bromothiophen‐2‐yl) thieno[3,2‐b]thiophene‐3,6‐dicarboxylate ( TT‐Th ), is incorporated to construct a wide‐bandgap (1.88 eV) polymer PBDT‐TT for nonfullerene polymer solar cells (NF‐PSCs). PBDT‐TT possesses suitable energy levels and complementary absorption when blended with both ITIC analogues ( ITIC and IT‐M ) and a near‐infrared (NIR) acceptor ( 6TIC ). Moreover, PBDT‐TT exhibits good conjugated planarity and preferable face‐on orientation in the blended thin film, which are beneficial for charge transfer and carrier transport. The PSCs based on PBDT‐TT : IT‐M and PBDT‐TT : 6TIC blend films yield high power conversion efficiencies of 11.38% and 11.03%, respectively. To the best of the authors' knowledge, the PCE of 11.03% for PBDT‐TT : 6TIC‐ based device is one of the highest values reported for NIR NF‐PSCs. This work demonstrates that TT‐Th is a useful new electron‐accepting building block for making p‐type wide bandgap polymers for efficient NIR NF‐PSCs.  相似文献   

18.
The high power conversion efficiencies (PCEs) of laboratory‐scale polymer‐based organic solar cells are yet to translate to large area modules because of a number of factors including the relatively large sheet resistance of available transparent conducting electrodes (TCEs), and the high defect densities associated with thin organic semiconductor junctions. The TCE problem limits device architectures to narrow connected strips (<1 cm) causing serious fabrication difficulties and extra costs. Thin junctions are required because of poor charge transport (imbalanced mobilities) in the constituent organic semiconductors. These issues are addressed using a combination of approaches to create thick junctions conformally coated on low sheet resistance metal grid TCEs. An essential feature of these thick junctions is balanced carrier mobilities, which affords high fill factors and efficient carrier extraction. Conformal coating is achieved by promoting enhanced intermolecular interactions in the coating solution using a high molecular weight polymeric semiconductor and appropriate solvent system. This combination of balanced mobilities, conformal coating and metallic grid TCEs is a simple and generic approach to the fabrication of defect‐free large area organic solar cells (OSCs). The approach is demonstrated with 25 cm2 monolithic devices possessing aperture‐corrected power conversion efficiencies of 5% and fill factors exceeding 0.5.  相似文献   

19.
All‐polymer solar cells (all‐PSCs) are attractive as alternatives to fabricate thermally and mechanically stable solar cells, especially with recent improvements in their power conversion efficiency (PCE). In this work, efficient all‐PSCs with near‐infrared response (up to 850 nm) are developed using newly designed regioregular polymer donors with relatively narrow optical gap. These all‐PSCs systems achieve PCEs up to 6.0% after incorporating fluorine into the polymer backbone. More importantly, these polymers exhibit absorbance that is complementary to previously reported wide bandgap polymer donors. Thus, the superior properties of the newly designed polymers afford opportunities to fabricate the first spectrally matched all‐polymer tandem solar cells with high performance. A PCE of 8.3% is then demonstrated which is the highest efficiency so far for all‐polymer tandem solar cells. The design of narrow bandgap polymers provides new directions to enhance the PCE of emerging single‐junction and tandem all polymer solar cells.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号