首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
A europium (Eu)‐doped di‐calcium magnesium di‐silicate phosphor, Ca2MgSi2O7:Eu2+, was prepared using a solid‐state reaction method. The phase structure, particle size, surface morphology, elemental analysis, different stretching mode and luminescence properties were analyzed by X‐ray diffraction (XRD), transmission electron microscopy (TEM), field emission scanning electron microscopy (FESEM) with energy dispersive X‐ray spectroscopy (EDX), Fourier transform infrared (FTIR) spectroscopy, photoluminescence (PL) and mechanoluminescence (ML). The phase structure of Ca2MgSi2O7:Eu2+ was an akermanite‐type structure, which belongs to the tetragonal crystallography with space group P4?21m; this structure is a member of the melilite group and forms a layered compound. The surface of the prepared phosphor was not found to be uniform and particle distribution was in the nanometer range. EDX and FTIR confirm the components of Eu2+‐doped Ca2MgSi2O7 phosphor. Under UV excitation, the main emission peak appeared at 530 nm, belonging to the broad emission ascribed to the 4f65d1→4f7 transition of Eu2+. The ML intensity of the prepared phosphor increased linearly with increasing impact velocity. A CIE color chromaticity diagram and ML spectrum confirmed that the prepared Ca2MgSi2O7:Eu2+ phosphor would emit green color and the ML spectrum was similar to that of PL, which indicated that ML is emitted from the same center of Eu2+ ions. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

3.
4.
Ca3Al2Ge2O10:Cr3+ phosphors were prepared by a high‐temperature solid‐state method, and their luminescence properties were investigated. Under excitation at 550 nm, Ca3Al2Ge2O10:Cr3+ phosphors exhibited a broad red emission band at 697 nm in the range 650–750 nm that was caused by the 2E→4A2 transition of Cr3+. For the 697 nm emission peak, emission intensity reached a maximum at x = 0.07, and there was concentration quenching of Cr3+ in Ca3Al2Ge2O10; the corresponding concentration quenching mechanism was analysed. Under excitation at 262 nm, the Ca3Al2Ge2O10:Cr3+ phosphor showed a weakly broad emission band in the range 350–600 nm that was caused by intrinsic defects (V′′Ca and V′′O). Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

5.
This paper introduces oxygen‐deficient black TiO2 with hierarchically ordered porous structure fabricated by a simple hydrogen reduction as a carbon‐ and binder‐free cathode, demonstrating superior energy density and stability. With the high electrical conductivity derived from oxygen vacancies or Ti3+ ions, this unique electrode features micrometer‐sized voids with mesoporous walls for the effective accommodation of Li2O2 toroid and for the rapid transport of reaction molecules without the electrode being clogged. In the highly ordered architecture, toroidal Li2O2 particles are guided to form with a regular size and separation, which induces the most of Li2O2 external surface to be directly exposed to the electrolyte. Therefore, large Li2O2 toroids (≈300 nm) grown from solution can be effectively charged by incorporating a soluble catalyst, resulting in a very small polarization (≈0.37 V). Furthermore, disordered nanoshell in black TiO2 is suggested to protect the oxygen‐deficient crystalline core, by which oxidation of Ti3+ is kinetically impeded during battery operation, leading to the enhanced electrode stability even in a highly oxidizing environment under high voltage (≈4 V).  相似文献   

6.
Spermidine (Spd) has been correlated with various physiological and developmental processes in plants, including pollen tube growth. In this work, we show that Spd induces an increase in the cytosolic Ca2+ concentration that accompanies pollen tube growth. Using the whole‐cell patch clamp and outside‐out single‐channel patch clamp configurations, we show that exogenous Spd induces a hyperpolarization‐activated Ca2+ current: the addition of Spd cannot induce the channel open probability increase in excised outside‐out patches, indicating that the effect of Spd in the induction of Ca2+ currents is exerted via a second messenger. This messenger is hydrogen peroxide (H2O2), and is generated during Spd oxidation, a reaction mediated by polyamine oxidase (PAO). These reactive oxygen species trigger the opening of the hyperpolarization‐activated Ca2+‐permeable channels in pollen. To provide further evidence that PAO is in fact responsible for the effect of Spd on the Ca2+‐permeable channels, two Arabidopsis mutants lacking expression of the peroxisomal‐encoding AtPAO3 gene, were isolated and characterized. Pollen from these mutants was unable to induce the opening of the Ca2+‐permeable channels in the presence of Spd, resulting in reduced pollen tube growth and seed number. However, a high Spd concentration triggers a Ca2+ influx beyond the optimal, which has a deleterious effect. These findings strongly suggest that the Spd‐derived H2O2 signals Ca2+ influx, thereby regulating pollen tube growth.  相似文献   

7.
8.
9.
10.
11.
In response to pathogens, plant cells exhibit a rapid increase in the intracellular calcium concentration and a burst of reactive oxygen species (ROS). The cytosolic increase in Ca2+ and the accumulation of ROS are critical for inducing programmed cell death (PCD), but the molecular mechanism is not fully understood. We screened an Arabidopsis mutant, sad2‐5, which harbours a T‐DNA insertion in the 18th exon of the importin beta‐like gene, SAD2. The H2O2‐induced increase in the [Ca2+]cyt of the sad2‐5 mutant was greater than that of the wild type, and the sad2‐5 mutant showed clear cell death phenotypes and abnormal H2O2 accumulation under fumonisin‐B1 (FB1) treatment. CaCl2 could enhance the FB1‐induced cell death of the sad2‐5 mutant, whereas lanthanum chloride (LaCl3), a broad‐spectrum calcium channel blocker, could restore the FB1‐induced PCD phenotype of sad2‐5. The sad2‐5 fbr11‐1 double mutant exhibited the same FB1‐insensitive phenotype as fbr11‐1, which plays a critical role in novo sphingolipid synthesis, indicating that SAD2 works downstream of FBR11. These results suggest the important role of nuclear transporters in calcium‐ and ROS‐mediated PCD response as well as provide an important theoretical basis for further analysis of the molecular mechanism of SAD2 function in PCD and for improvement of the resistance of crops to adverse environments.  相似文献   

12.
13.
It has become clear that cycling lithium‐oxygen cells in carbonate electrolytes is impractical, as electrolyte decomposition, triggered by oxygen reduction products, dominates the cell chemistry. This research shows that employing an α‐MnO2/ramsdellite‐MnO2 electrode/electrocatalyst results in the formation of lithium‐oxide‐like discharge products in propylene carbonate, which has been reported to be extremely susceptible to decomposition. X‐ray photoelectron data have shown that what are likely lithium oxides (Li2O2 and Li2O) appear to form and decompose on the air electrode surface, particularly at the MnO2 surface, while Li2CO3 is also formed. By contrast, cells without α‐MnO2/ramsdellite‐MnO2 fail rapidly in electrochemical cycling, likely due to the differences in the discharge product. Relatively high electrode capacities, up to 5000 mAh/g (carbon + electrode/electrocatalyst), have been achieved with non‐optimized air electrodes. Insights into reversible insertion reactions of lithium, lithium peroxide (Li2O2) and lithium oxide (Li2O) in the tunnels of α‐MnO2, and the reaction of lithium with ramsdellite‐MnO2, as determined by first principles density functional theory calculations, are used to provide a possible explanation for some of the observed results. It is speculated that a Li2O‐stabilized and partially‐lithiated electrode component, 0.15Li2α‐LixMnO2, that has Mn4+/3+ character may facilitate the Li2O2/Li2O discharge/charge chemistries providing dual electrode/electrocatalyst functionality.  相似文献   

14.
An innovative and environmentally friendly battery chemistry is proposed for high power applications. A carbon‐coated ZnFe2O4 nanoparticle‐based anode and a LiFePO4‐multiwalled carbon nanotube‐based cathode, both aqueous processed with Na‐carboxymethyl cellulose, are combined, for the first time, in a Li‐ion full cell with exceptional electrochemical performance. Such novel battery shows remarkable rate capabilities, delivering 50% of its nominal capacity at currents corresponding to ≈20C (with respect to the limiting cathode). Furthermore, the pre‐lithiation of the negative electrode offers the possibility of tuning the cell potential and, therefore, achieving remarkable gravimetric energy and power density values of 202 Wh kg?1 and 3.72 W kg?1, respectively, in addition to grant a lithium reservoir. The high reversibility of the system enables sustaining more than 10 000 cycles at elevated C‐rates (≈10C with respect to the LiFePO4 cathode), while retaining up to 85% of its initial capacity.  相似文献   

15.
A challenge still remains to develop high‐performance and cost‐effective air electrode for Li‐O2 batteries with high capacity, enhanced rate capability and long cycle life (100 times or above) despite recent advances in this field. In this work, a new design of binder‐free air electrode composed of three‐dimensional (3D) graphene (G) and flower‐like δ‐MnO2 (3D‐G‐MnO2) has been proposed. In this design, graphene and δ‐MnO2 grow directly on the skeleton of Ni foam that inherits the interconnected 3D scaffold of Ni foam. Li‐O2 batteries with 3D‐G‐MnO2 electrode can yield a high discharge capacity of 3660 mAh g?1 at 0.083 mA cm?2. The battery can sustain 132 cycles at a capacity of 492 mAh g?1 (1000 mAh gcarbon ?1) with low overpotentials under a high current density of 0.333 mA cm?2. A high average energy density of 1350 Wh Kg?1 is maintained over 110 cycles at this high current density. The excellent catalytic activity of 3D‐G‐MnO2 makes it an attractive air electrode for high‐performance Li‐O2 batteries.  相似文献   

16.
17.
Trees have an abundant network of channels for the multiphase transport of water, ions, and nutrients. Recent studies have revealed that multiphase transport of ions, oxygen (O2) gas, and electrons also plays a fundamental role in lithium–oxygen (Li–O2) batteries. The similarity in transport behavior of both systems is the inspiration for the development of Li–O2 batteries from natural wood featuring noncompetitive and continuous individual pathways for ions, O2, and electrons. Using a delignification treatment and a subsequent carbon nanotube/Ru nanoparticle coating process, one is able to convert a rigid and electrically insulating wood membrane into a flexible and electrically conductive material. The resulting cell walls are comprised of cellulose nanofibers with abundant nanopores, which are ideal for Li+ ion transport, whereas the unperturbed wood lumina act as a pathway for O2 gas transport. The noncompetitive triple pathway design endows the wood‐based cathode with a low overpotential of 0.85 V at 100 mA g?1, a record‐high areal capacity of 67.2 mAh cm?2, a long cycling life of 220 cycles, and superior electrochemical and mechanical stability. The integration of such excellent electrochemical performance, outstanding mechanical flexibility, and renewable yet cost‐effective starting materials via a nature‐inspired design opens new opportunities for developing portable energy storage devices.  相似文献   

18.
Rechargeable aqueous zinc‐ion batteries (ZIBs) are appealing due to their high safety, zinc abundance, and low cost. However, developing suitable cathode materials remains a great challenge. Herein, a novel 2D heterostructure of ultrathin amorphous vanadium pentoxide uniformly grown on graphene (A‐V2O5/G) with a very short ion diffusion pathway, abundant active sites, high electrical conductivity, and exceptional structural stability, is demonstrated for highly reversible aqueous ZIBs (A‐V2O5/G‐ZIBs), coupling with unprecedented high capacity, rate capability, long‐term cyclability, and excellent safety. As a result, 2D A‐V2O5/G heterostructures for stacked ZIBs at 0.1 A g?1 display an ultrahigh capacity of 489 mAh g?1, outperforming all reported ZIBs, with an admirable rate capability of 123 mAh g?1 even at 70 A g?1. Furthermore, the new‐concept prototype planar miniaturized zinc‐ion microbatteries (A‐V2O5/G‐ZIMBs), demonstrate a high volumetric capacity of 20 mAh cm?3 at 1 mA cm?2, long cyclability; holding high capacity retention of 80% after 3500 cycles, and in‐series integration, demonstrative of great potential for highly‐safe microsized power sources. Therefore, the exploration of such 2D heterostructure materials with strong synergy is a reliable strategy for developing safe and high‐performance energy storage devices.  相似文献   

19.
The critical challenges of Li‐O2 batteries lie in sluggish oxygen redox kinetics and undesirable parasitic reactions during the oxygen reduction reaction and oxygen evolution reaction processes, inducing large overpotential and inferior cycle stability. Herein, an elaborately designed 3D hierarchical heterostructure comprising NiCo2S4@NiO core–shell arrays on conductive carbon paper is first reported as a freestanding cathode for Li‐O2 batteries. The unique hierarchical array structures can build up multidimensional channels for oxygen diffusion and electrolyte impregnation. A built‐in interfacial potential between NiCo2S4 and NiO can drastically enhance interfacial charge transfer kinetics. According to density functional theory calculations, intrinsic LiO2‐affinity characteristics of NiCo2S4 and NiO play an importantly synergistic role in promoting the formation of large peasecod‐like Li2O2, conducive to construct a low‐impedance Li2O2/cathode contact interface. As expected, Li‐O2 cells based on NiCo2S4@NiO electrode exhibit an improved overpotential of 0.88 V, a high discharge capacity of 10 050 mAh g?1 at 200 mA g?1, an excellent rate capability of 6150 mAh g?1 at 1.0 A g?1, and a long‐term cycle stability under a restricted capacity of 1000 mAh g?1 at 200 mA g?1. Notably, the reported strategy about heterostructure accouplement may pave a new avenue for the effective electrocatalyst design for Li‐O2 batteries.  相似文献   

20.
A blue‐emitting phosphor Ca12Al14O32F2:Eu2+ was synthesized using a high‐temperature solid‐state reaction under a reductive atmosphere. The X‐ray diffraction measurements indicate that a pure phase Ca12Al14O32F2:Eu2+ can be obtained for low doping concentration of Eu2+. The phosphor has a strong absorption in the range 270–420 nm with a maximum at ~340 nm and blue emission in the range 400–500 nm with chromatic coordination of (0.152, 0.045). The optimal doping concentration is ~0.24. In addition, the luminescence properties of the as‐synthesized phosphor were evaluated by comparison with those of Ca12Al14O32Cl2:Eu2+ and the commercially available phosphor BaMgAl10O17:Eu2+. The emission intensity of Ca12Al14O32F2:Eu2+ was ~72% that of BaMgAl10O17:Eu2+ under excitation at λ = 375 nm. The results indicate that Ca12Al14O32F2:Eu2+ has potential application as a near‐UV‐convertible blue phosphor for white light‐emitting diodes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号