首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
A simple and scalable method to fabricate graphene‐cellulose paper (GCP) membranes is reported; these membranes exhibit great advantages as freestanding and binder‐free electrodes for flexible supercapacitors. The GCP electrode consists of a unique three‐dimensional interwoven structure of graphene nanosheets and cellulose fibers and has excellent mechanical flexibility, good specific capacitance and power performance, and excellent cyclic stability. The electrical conductivity of the GCP membrane shows high stability with a decrease of only 6% after being bent 1000 times. This flexible GCP electrode has a high capacitance per geometric area of 81 mF cm?2, which is equivalent to a gravimetric capacitance of 120 F g?1 of graphene, and retains >99% capacitance over 5000 cycles. Several types of flexible GCP‐based polymer supercapacitors with various architectures are assembled to meet the power‐energy requirements of typical flexible or printable electronics. Under highly flexible conditions, the supercapacitors show a high capacitance per geometric area of 46 mF cm?2 for the complete devices. All the results demonstrate that polymer supercapacitors made using GCP membranes are versatile and may be used for flexible and portable micropower devices.  相似文献   

2.
Wearable textile energy storage systems are rapidly growing, but obtaining carbon fiber fabric electrodes with both high capacitances to provide a high energy density and mechanical strength to allow the material to be weaved or knitted into desired devices remains challenging. In this work, N/O‐enriched carbon cloth with a large surface area and the desired pore volume is fabricated. An electrochemical oxidation method is used to modify the surface chemistry through incorporation of electrochemical active functional groups to the carbon surface and to further increase the specific surface area and the pore volume of the carbon cloth. The resulting carbon cloth electrode presents excellent electrochemical properties, including ultrahigh areal capacitance with good rate ability and cycling stability. Furthermore, the fabricated symmetric supercapacitors with a 2 V stable voltage window deliver ultrahigh energy densities (6.8 mW h cm?3 for fiber‐shaped samples and 9.4 mW h cm?3 for fabric samples) and exhibit excellent flexibility. The fabric supercapacitors are further tested in a belt‐shaped device as a watchband to power an electronic watch for ≈9 h, in a heart‐shaped logo to supply power for ≈1 h and in a safety light that functions for ≈1 h, indicating various promising applications of these supercapacitors.  相似文献   

3.
4.
The charge storage characteristics of a composite nanoarchitecture with a highly functional 3D morphology are reported. The electrodes are formed by the electropolymerization of aniline monomers into a nanometer‐thick polyaniline (PANI) film that conformally coats graphitic petals (GPs) grown by microwave plasma chemical vapor deposition (MPCVD) on conductive carbon cloth (CC). The hybrid CC/GPs/PANI electrodes yield results near the theoretical maximum capacitance for PANI of 2000 F g?1 (based on PANI mass) and a large area‐normalized specific capacitance of ≈2.6 F cm?2 (equivalent to a volumetric capacitance of ≈230 F cm?3) at a low current density of 1 A g?1 (based on PANI mass). The specific capacitances remain above 1200 F g?1 (based on PANI mass) for currents up to 100 A g?1 with correspondingly high area‐normalized values. The hybrid electrodes also exhibit a high rate capability with an energy density of 110 Wh kg?1 and a maximum power density of 265 kW kg?1 at a current density of 100 A g?1. Long‐term cyclic stability is good (≈7% loss of initial capacitance after 2000 cycles), with coulombic efficiencies >99%. Moreover, prototype all‐solid‐state flexible supercapacitors fabricated from these hybrid electrodes exhibit excellent energy storage performance.  相似文献   

5.
Fiber‐supercapacitors (FSCs) are promising energy storage devices that can complement or even replace microbatteries in miniaturized portable and wearable electronics. Currently, a major challenge for FSCs is achieving ultrahigh volumetric energy and power densities simultaneously, especially when the charge/discharge rates exceed 1 V s?1. Herein, an Au‐nanoparticle‐doped‐MnOx@CoNi‐alloy@carbon‐nanotube (Au–MnOx@CoNi@CNT) core/shell nanocomposite fiber electrode is designed, aiming to boost its charge/discharge rate by taking advantage of the superconductive CoNi alloy network and the greatly enhanced conductivity of the Au doped MnOx active materials. An all‐solid‐state coaxial asymmetric FSC (CAFSC) prototype device made by wrapping this fiber with a holey graphene paper (HGP) exhibits excellent performance at rates up to 10 V s?1, which is the highest charge rate demonstrated so far for FSCs based on pseudocapacitive materials. Furthermore, our fully packaged CAFSC delivers a volumetric energy density of ≈15.1 mW h cm?3, while simultaneously maintaining a high power density of 7.28 W cm?3 as well as a long cycle life (90% retention after 10 000 cycles). This value is the highest among all reported FSCs, even better than that of a typical 4 V/500 µA h thin‐film lithium battery.  相似文献   

6.
Supercapacitors based on freestanding and flexible electrodes that can be fabricated with bacterial cellulose (BC), multiwalled carbon nanotubes (MWCNTs), and polyaniline (PANI) are reported. Due to the porous structure and electrolyte absorption properties of the BC paper, the flexible BC‐MWCNTs‐PANI hybrid electrode exhibits appreciable specific capacitance (656 F g?1 at a discharge current density of 1 A g?1) and remarkable cycling stability with capacitance degradation less than 0.5% after 1000 charge–discharge cycles at a current density of 10 A g?1. The facile and low‐cost of this binder‐free paper electrode may have great potential in development of flexible energy‐storage devices.  相似文献   

7.
All‐solid‐state batteries are promising candidates for the next‐generation safer batteries. However, a number of obstacles have limited the practical application of all‐solid‐state Li batteries (ASSLBs), such as moderate ionic conductivity at room temperature. Here, unlike most of the previous approaches, superior performances of ASSLBs are achieved by greatly reducing the thickness of the solid‐state electrolyte (SSE), where ionic conductivity is no longer a limiting factor. The ultrathin SSE (7.5 µm) is developed by integrating the low‐cost polyethylene separator with polyethylene oxide (PEO)/Li‐salt (PPL). The ultrathin PPL shortens Li+ diffusion time and distance within the electrolyte, and provides sufficient Li+ conductance for batteries to operate at room temperature. The robust yet flexible polyethylene offers mechanical support for the soft PEO/Li‐salt, effectively preventing short‐circuits even under mechanical deformation. Various ASSLBs with PPL electrolyte show superior electrochemical performance. An initial capacity of 135 mAh g?1 at room temperature and the high‐rate capacity up to 10 C at 60 °C can be achieved in LiFePO4/PPL/Li batteries. The high‐energy‐density sulfur cathode and MoS2 anode employing PPL electrolyte also realize remarkable performance. Moreover, the ASSLB can be assembled by a facile process, which can be easily scaled up to mass production.  相似文献   

8.
Lithium alanates exhibit high theoretical specific capacities and appropriate lithiation/delithiation potentials, but suffer from poor reversibility, cycling stability, and rate capability due to their sluggish kinetics and extensive side reactions. Herein, a novel and facile solid‐state prelithiation approach is proposed to in situ prepare a Li3AlH6‐Al nanocomposite from a short‐circuited electrochemical reaction between LiAlH4 and Li with the help of fast electron and Li‐ion conductors (C and P63mc LiBH4). This nanocomposite consists of dispersive Al nanograins and an amorphous Li3AlH6 matrix, which enables superior electrochemical performance in solid‐state cells, as much higher specific capacity (2266 mAh g?1), Coulombic efficiency (88%), cycling stability (71% retention in the 100th cycle), and rate capability (1429 mAh g?1 at 1 A g?1) are achieved. In addition, this nanocomposite works well in the solid‐state full cell with LiCoO2 cathode, demonstrating its promising application prospects. Mechanism analysis reveals that the dispersive Al nanograins and amorphous Li3AlH6 matrix can dramatically enhance the lithiation and delithiation kinetics without side reactions, which is mainly responsible for the excellent overall performance. Moreover, this solid‐state prelithiation approach is general and can also be applied to other Li‐poor electrode materials for further modification of their electrochemical behavior.  相似文献   

9.
A practical, low‐cost synthesis of hollow mesoporous organic polymer (HMOP) spheres is reported. The electrochemical properties of Li+/Na+‐electrolyte membranes with these spheres substituting for oxide filler particles in poly(ethylene oxide) (PEO)‐filler composite are explored. The electrolyte membranes are mechanically robust, thermally stable to over 250 °C, and block dendrites from a metallic‐lithium/sodium anode. The Li+/Na+ transfer impedance across the lithium/sodium–electrolyte interface is initially acceptable at 65 °C and scavenging of impurities by the porous‐spheres filler lowers this impedance relative to that with Al2O3. All‐solid‐state Li/LiFePO4 and Na/NaTi2(PO4)3 cells give stable discharge capacity of ≈130 and 80 mAh g?1, respectively, at 0.5 C and 65 °C for 100 cycles.  相似文献   

10.
Graphene micro‐supercapacitors (MSCs) are an attractive energy storage technology for powering miniaturized portable electronics. Despite considerable advances in recent years, device fabrication typically requires conventional microfabrication techniques, limiting the translation to cost‐effective and high‐throughput production. To address this issue, we report here a self‐aligned printing process utilizing capillary action of liquid inks in microfluidic channels to realize scalable, high‐fidelity manufacturing of graphene MSCs. Microstructured ink receivers and capillary channels are imprinted on plastic substrates and filled by inkjet printing of functional materials into the receivers. The liquid inks move under capillary flow into the adjoining channels, allowing reliable patterning of electronic materials in complex structures with greatly relaxed printing tolerance. Leveraging this process with pristine graphene and ion gel inks, miniaturized all‐solid‐state graphene MSCs are demonstrated to concurrently achieve outstanding resolution (active footprint: <1 mm2, minimum feature size: 20 µm) and yield (44/44 devices), while maintaining a high specific capacitance (268 µF cm–2) and robust stability to extended cycling and bending, establishing an effective route to scale down device size while scaling up production throughput.  相似文献   

11.
All‐solid‐state on‐chip SiC supercapacitors (SCs) based on free‐standing SiC nanowire arrays (NWAs) are reported. In comparison to the widely used technique based on the interdigitated fingers, the present strategy can be much more facile for constructing on‐chip SCs devices, which is directly sandwiched with a solid electrolyte layer between two pieces of SiC NWAs film without any substrate. The mass loading of active materials of on‐chip SiC SCs can be up to ≈5.6 mg cm?2, and the total device thickness is limited in ≈40 µm. The specific area energy and power densities of the SCs device reach 5.24 µWh cm?2 and 11.2 mW cm?2, and their specific volume energy and power densities run up to 1.31 mWh cm–3 and 2.8 W cm?3, respectively, which are two orders of magnitude higher than those of state‐of‐the‐art SiC‐based SCs, and also much higher than those of other solid‐state carbon‐based SCs ever reported. Furthermore, such on‐chip SCs exhibit superior rate capability and robust stability with over 94% capacitance retention after 10 000 cycles at a scan rate of 100 mV s?1, representing their high performance in all merits.  相似文献   

12.
High‐performance, breathable, conductive, and flexible polypyrrole (PPy) coated paper electrodes are prepared by an interfacial polymerization method using air‐laid paper as a substrate. Owing to the synergistic effect of superior electrical conductivity, high wettability, and the porous architecture, the prepared electrode not only shows an outstanding specific capacitance and rate abilities (3100 and 2579 mF cm?2 at 1 and 20 mA cm?2 for a PPy coated paper electrode), but also exhibits excellent flexibility, wearability, and breathability. Based on these superior features, an all‐solid‐state supercapacitor assembled with the PPy coated paper electrodes shows an outstanding energy density of 62.4 µW h cm?2, remarkable air permeability and excellent flexibility to sustain various deformations. Furthermore, large‐scale fabrication of conductive flexible paper electrode can be easily achieved through this method. Therefore, this work offers a new vision for flexible energy storage.  相似文献   

13.
Solid‐state electrolytes are a promising candidate for the next‐generation lithium‐ion battery, as they have the advantages of eliminating the leakage hazard of liquid solvent and elevating stability. However, inherent limitations such as the low ionic conductivity of solid polymer electrolytes and the high brittleness of inorganic ceramic electrolytes severally impede their practical application. Here, an inexpensive, facile, and scalable strategy to fabricate a hybrid Li7La3Zr2O12 (LLZO) and poly(ethylene oxide)‐based electrolyte by exploiting bacterial cellulose as a template is reported. The well‐organized LLZO network significantly enhances the ionic conductivity by extending long transport pathways for Li ions, exhibiting an elevated conductivity of 1.12 × 10?4 S cm?1. In addition, the hybrid electrolyte presents a structural flexibility, with minor impedance increase after bending. The facile and applicable approach establishes new principles for the strategy of designing scalable and flexible hybrid polymer electrolytes that can be utilized for high‐energy‐density batteries.  相似文献   

14.
A hierarchical all‐solid‐state electrolyte based on nitrile materials (SEN) is prepared via in situ synthesis method. This hierarchical structure is fabricated by in situ polymerizing the cyanoethyl polyvinyl alcohol (PVA‐CN) in succinonitrile (SN)‐based solid electrolyte that is filled in the network of polyacrylonitrile (PAN)‐based electrospun fiber membrane. The crosslinked PVA‐CN polymer framework is uniformly dispersed in the SN‐based solid electrolyte, which can strongly enhance its mechanical strength and keeps it in a quasi‐solid state even over the melting point. The electrospun fiber membrane efficiently reduces the thickness of SEN film besides a further improvement in strength. Because of the unique hierarchical structure and structure similarity among the raw materials, the prepared SEN film exhibits high room‐temperature ionic conductance (0.30 S), high lithium ion transference number (0.57), favorable mechanical strength (15.31 MPa), excellent safety, and good flexibility. Furthermore, the in situ synthesis ensures an excellent adhesion between SEN and electrodes, which leads to an outstanding electrochemical performance for the assembled LiFePO4/SEN/Li cells. Both the superior performance of SEN and the simple fabricating process of SEN‐based all‐solid‐state cells make it potentially as one of the most promising electrolyte materials for next generation lithium‐ion batteries.  相似文献   

15.
16.
All‐solid‐state sodium metal batteries (SSMBs) are of great interest for their high theoretical capacity, nonflammability, and relatively low cost owing partially to the abundance of sodium recourses. However, it is challenging to fabricate SSMBs because compared with their counterparts, which contain lithium metal, sodium metal is mechanically softer and more reactive toward the electrolyte. Herein, the synthesis and electrochemical properties of newly designed sodium‐containing hybrid network solid polymer electrolytes (SPEs) and their application in SSMBs are reported. The hybrid network is synthesized by controlled crosslinking of octakis(3‐glycidyloxypropyldimethylsiloxy)octasilsesquioxane and amine‐terminated polyethylene glycol in existence with sodium perchlorate (NaClO4). Plating and stripping experiments using symmetric cells show prolonged cycle life of the SPEs, >5150 and 3550 h at current density of 0.1 and 0.5 mA cm?2, respectively. The results for the first time show that the SPE|sodium metal interface migrates into the SPE phase upon cycling. SSMBs fabricated with the hybrid SPE sandwiched between sodium metal anode and bilayered δ‐NaxV2O5 cathode exhibit record‐high specific capacity for solid sodium‐ion batteries of 305 mAh g?1 and excellent Coulombic efficiency. This work demonstrates that the hybrid network SPEs are promising for SSMB applications.  相似文献   

17.
The increasing demand for portable and wearable electronics requires lightweight, thin, and highly flexible power sources, for example, flexible zinc‐air batteries (ZABs). The so‐far reported flexible ZAB devices mostly remain bulky, with a design consisting of two relatively thick substrates (e.g., carbon cloths and/or metal foams) and a gel electrolyte‐coated separator in between. Herein, an ultrathin (≈0.2 mm) solid‐state ZAB with high flexibility and performance is introduced by directly forming self‐standing active layers on each surface of an alkaline polymer membrane through an ink‐casting/hot‐pressing approach. A Fe/N‐doped 3D carbon with hierarchic pores and an interconnected network structure is used as cathode electrocatalyst, so that the backing gas‐diffusion layer (e.g., carbon cloth) can be abandoned. What is further, a microstructure‐modulating method to significantly increase the FeN4 active sites for oxygen reduction reaction is developed, thus significantly boosting the performance of the ZAB. The assembled solid‐state ZAB manifests remarkable peak power density of 250 mW cm?3 and high capacity of 150.4 mAh cm?3 at 8.3 mA cm?3, as well as excellent flexibility. The new design should provide valuable opportunity to the portable and wearable electronics.  相似文献   

18.
High energy density and power density within a limited volume of flexible solid‐state supercapacitors are highly desirable for practical applications. Here, free‐standing high‐quality 3D nanoporous duct‐like graphene (3D‐DG) films are fabricated with high flexibility and robustness as the backbones to deposit flower‐like MnO2 nanosheets (3D‐DG@MnO2). The 3D‐DG is the ideal support for the deposition of large amount of active materials because of its large surface area, appropriate pore structure, and negligible volume compared with other kinds of carbon backbones. Moreover, the 3D‐DG preserve the distinctive 2D coherent electronic properties of graphene, in which charge carriers move rapidly with a small resistance through the high‐quality and continuous chemical vapor deposition‐grown graphene building blocks, which results in a high rate performance. Marvelously, ultrathin (≈50 μm) flexible solid‐state asymmetric supercapacitors (ASCs) using 3D‐DG@MnO2 as the positive electrode and 3D hierarchical nanoporous graphene films as the negative electrode display ultrahigh volumetric energy density (28.2 mW h cm?3) and power density (55.7 W cm?3) at 2.0 V. Furthermore, as‐prepared ASCs show high cycle stability clearly demonstrating their broad applications as power supplies in wearable electronic devices.  相似文献   

19.
Flexible fiber‐shaped supercapacitors have shown great potential in portable and wearable electronics. However, small specific capacitance and low operating voltage limit the practical application of fiber‐shaped supercapacitors in high energy density devices. Herein, direct growth of ultrathin MnO2 nanosheet arrays on conductive carbon fibers with robust adhesion is exhibited, which exhibit a high specific capacitance of 634.5 F g?1 at a current density of 2.5 A g?1 and possess superior cycle stability. When MnO2 nanosheet arrays on carbon fibers and graphene on carbon fibers are used as a positive electrode and a negative electrode, respectively, in an all‐solid‐state asymmetric supercapacitor (ASC), the ASC displays a high specific capacitance of 87.1 F g?1 and an exceptional energy density of 27.2 Wh kg?1. In addition, its capacitance retention reaches 95.2% over 3000 cycles, representing the excellent cyclic ability. The flexibility and mechanical stability of these ASCs are highlighted by the negligible degradation of their electrochemical performance even under severely bending states. Impressively, as‐prepared fiber‐shaped ASCs could successfully power a photodetector based on CdS nanowires without applying any external bias voltage. The excellent performance of all‐solid‐state ASCs opens up new opportunity for development of wearable and self‐powered nanodevices in near future.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号