首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
With the rapid progress in developing hybrid perovskite solar cells, the allure of current density–voltage ( JV) hysteresis has attracted quite a lot of interest in the research community. It requires feasible approaches that further deepen the fundamental understanding of device physics in specific device architecture in order to solve this problem eventually. Here, perovskite solar cells configured with different counter electrodes are systematically investigated with the focus on charge accumulation within the devices responsible for JV hysteresis. The results indicate that JV hysteresis is affected by charge accumulation which can be modulated by carrier extraction efficiency of the electrodes. Through a rationally induced interfacial dipole, the devices have shown improvement in carrier extraction, which thus reduces JV hysteresis significantly. It provides solid evidence for the proposition that interface charge plays an important role in JV hysteresis, and demonstrates an applicable strategy that effectively alleviates JV hysteresis in perovskite solar cells.  相似文献   

2.
Interface engineering is of great concern in photovoltaic devices. For the solution‐processed perovskite solar cells, the modification of the bottom surface of the perovskite layer is a challenge due to solvent incompatibility. Herein, a Cl‐containing tin‐based electron transport layer; SnOx‐Cl, is designed to realize an in situ, spontaneous ion‐exchange reaction at the interface of SnOx‐Cl/MAPbI3. The interfacial ion rearrangement not only effectively passivates the physical contact defects, but, at the same time, the diffusion of Cl ions in the perovskite film also causes longitudinal grain growth and further reduces the grain boundary density. As a result, an efficiency of 20.32% is achieved with an extremely high open‐circuit voltage of 1.19 V. This versatile design of the underlying carrier transport layer provides a new way to improve the performance of perovskite solar cells and other optoelectronic devices.  相似文献   

3.
Organic–inorganic hybrid perovskite solar cells based on CH3NH3PbI3 have achieved great success with efficiencies exceeding 20%. However, there are increasing concerns over some reported efficiencies as the cells are susceptible to current–voltage (I–V) hysteresis effects. It is therefore essential that the origins and mechanisms of the I–V hysteresis can clearly be understood to minimize or eradicate these hysteresis effects completely for reliable quantification. Here, a detailed electro‐optical study is presented that indicates the hysteresis originates from lingering processes persisting from sub‐second to tens of seconds. Photocurrent transients, photoluminescence, electroluminescence, quasi‐steady state photoinduced absorption processes, and X‐ray diffraction in the perovskite solar cell configuration have been monitored. The slow processes originate from the structural response of the CH3NH3PbI3 upon E‐field application and/or charge accumulation, possibly involving methylammonium ions rotation/displacement and lattice distortion. The charge accumulation can arise from inefficient charge transfer at the perovskite interfaces, where it plays a pivotal role in the hysteresis. These findings underpin the significance of efficient charge transfer in reducing the hysteresis effects. Further improvements of CH3NH3PbI3‐based perovskite solar cells are possible through careful surface engineering of existing TiO2 or through a judicious choice of alternative interfacial layers.  相似文献   

4.
Adding cesium (Cs) and rubidium (Rb) cations to FA0.83MA0.17Pb(I0.83Br0.17)3 hybrid lead halide perovskites results in a remarkable improvement in solar cell performance, but the origin of the enhancement has not been fully understood yet. In this work, time‐of‐flight, time‐resolved microwave conductivity, and thermally stimulated current measurements are performed to elucidate the impact of the inorganic cation additives on the trap landscape and charge transport properties within perovskite solar cells. These complementary techniques allow for the assessment of both local features within the perovskite crystals and macroscopic properties of films and full devices. Strikingly, Cs‐incorporation is shown to reduce the trap density and charge recombination rates in the perovskite layer. This is consistent with the significant improvements in the open‐circuit voltage and fill factor of Cs‐containing devices. By comparison, Rb‐addition results in an increased charge carrier mobility, which is accompanied by a minor increase in device efficiency and reduced current–voltage hysteresis. By mixing Cs and Rb in quadruple cation (Cs‐Rb‐FA‐MA) perovskites, the advantages of both inorganic cations can be combined. This study provides valuable insights into the role of these additives in multiple‐cation perovskite solar cells, which are essential for the design of high‐performance devices.  相似文献   

5.
Lead halide perovskites often suffer from a strong hysteretic behavior on their jV response in photovoltaic devices that has been correlated with slow ion migration. The electron extraction layer has frequently been pointed to as the main culprit for the observed hysteretic behavior. In this work three hole transport layers are studied with well‐defined highest occupied molecular orbital (HOMO) levels and interestingly the hysteretic behavior is markedly different. Here it is shown that an adequate energy level alignment between the HOMO level of the extraction layer and the valence band of the perovskite, not only suppresses the hysteresis, avoiding charge accumulation at the interfaces, but also degradation of the hole transport layer is reduced. Numerical simulation suggests that formation of an injection barrier at the organic/perovskite heterointerface could be one mechanism causing hysteresis. The suppression of such barriers may require novel design rules for interface materials. Overall, this work highlights that both external contacts need to be carefully optimized in order to obtain hysteresis‐free perovskite devices.  相似文献   

6.
The influence of illumination on the long‐term performance of planar structured perovskite solar cells (PSCs) is investigated using fast and spatially resolved luminescence imaging. The authors analyze the effect of illuminated current density–voltage (JV) and light‐soaking measurements on pristine PSCs by providing visual evidence for the spatial inhomogeneous evolution of device performance. Regions that are exposed to light initially produce stronger electroluminescence signals than surrounding unilluminated regions, mainly due to a lower contact resistance and, possibly, higher charge collection efficiency. Over a period of several days, however, these initially illuminated regions appear to degrade more quickly despite the device being stored in a dark, moisture‐ and oxygen‐free environment. Using transmission electron microscopy, this accelerated degradation is attributed to delamination between the perovskite and the titanium dioxide (TiO2) layer. An ion migration mechanism is proposed for this delamination process, which is in accordance with previous current–voltage hysteresis observations. These results provide evidence for the intrinsic instability of CH3NH3PbI3‐based devices under illumination and have major implications for the design of PSCs from the standpoint of long‐term performance and stability.  相似文献   

7.
Through detailed device characterization using cross‐sectional Kelvin probe force microscopy (KPFM) and trap density of states measurements, we identify that the JV hysteresis seen in planar organic–inorganic hybrid perovskite solar cells (PVSCs) using SnO2 electron selective layers (ESLs) synthesized by low‐temperature plasma‐enhanced atomic‐layer deposition (PEALD) method is mainly caused by the imbalanced charge transportation between the ESL/perovskite and the hole selective layer/perovskite interfaces. We find that this charge transportation imbalance is originated from the poor electrical conductivity of the low‐temperature PEALD SnO2 ESL. We further discover that a facile low‐temperature thermal annealing of SnO2 ESLs can effectively improve the electrical mobility of low‐temperature PEALD SnO2 ESLs and consequently significantly reduce or even eliminate the JV hysteresis. With the reduction of JV hysteresis and optimization of deposition process, planar PVSCs with stabilized output powers up to 20.3% are achieved. The results of this study provide insights for further enhancing the efficiency of planar PVSCs.  相似文献   

8.
Organic–inorganic hybrid perovskite solar cells (PSCs) have become a promising candidate in the photovoltaic field due to their high power conversion efficiency and low material cost. However, the development of PSCs is limited by their poor stability under practical conditions in the presence of oxygen, moisture, sunlight, heat, and the current–voltage (IV) hysteresis. In particular, the hysteretic IV issue casts doubt on the validity of the photovoltaic performance results that are achieved, making it difficult to evaluate the authentic performance of PSCs. This review article focuses on understanding the IV hysteresis behavior in PSCs and on exploring the possible reasons leading to this hysteresis phenomenon. The various strategies attempted to suppress the IV hysteresis in PSCs are summarized, and a brief future recommendation is provided.  相似文献   

9.
2D halide perovskite materials have shown great advantages in terms of stability when applied in a photovoltaic device. However, the impediment of charge transport within the layered structure drags down the device performance. Here for the first time, a 3D–2D (MAPbI3‐PEA2Pb2I4) graded perovskite interface is demonstrated with synergistic advantages. In addition to the significantly improved ambient stability, this graded combination modifies the interface energy level in such a way that reduces interface charge recombination, leading to an ultrahigh V oc at 1.17 V, a record for NiO‐based p‐i‐n photovoltaic devices. Moreover, benefiting from the graded structure induced continuously upshifts energy level, the photovoltaic device attains a high J sc of 21.80 mA cm?2 and a high fill factor of 0.78, resulting in an overall power conversion efficiency (PCE) of 19.89%. More importantly, it is showed that such a graded interface structure also suppresses ion migration in the device, accounting for its significantly enhanced thermal stability.  相似文献   

10.
In perovskite solar cells (PSCs), the interfaces are a weak link with respect to degradation. Electrochemical reactivity of the perovskite's halides has been reported for both molecular and polymeric hole selective layers (HSLs), and here it is shown that also NiO brings about this decomposition mechanism. Employing NiO as an HSL in p–i–n PSCs with power conversion efficiency (PCE) of 16.8%, noncapacitive hysteresis is found in the dark, which is attributable to the bias‐induced degradation of perovskite/NiO interface. The possibility of electrochemically decoupling NiO from the perovskite via the introduction of a buffer layer is explored. Employing a hybrid magnesium‐organic interlayer, the noncapacitive hysteresis is entirely suppressed and the device's electrical stability is improved. At the same time, the PCE is improved up to 18% thanks to reduced interfacial charge recombination, which enables more efficient hole collection resulting in higher Voc and FF.  相似文献   

11.
In this work, the authors realize stable and highly efficient wide‐bandgap perovskite solar cells that promise high power conversion efficiencies (PCE) and are likely to play a key role in next generation multi‐junction photovoltaics (PV). This work reports on wide‐bandgap (≈1.72 eV) perovskite solar cells exhibiting stable PCEs of up to 19.4% and a remarkably high open‐circuit voltage (VOC) of 1.31 V. The VOC‐to‐bandgap ratio is the highest reported for wide‐bandgap organic?inorganic hybrid perovskite solar cells and the VOC also exceeds 90% of the theoretical maximum, defined by the Shockley–Queisser limit. This advance is based on creating a hybrid 2D/3D perovskite heterostructure. By spin coating n‐butylammonium bromide on the double‐cation perovskite absorber layer, a thin 2D Ruddlesden–Popper perovskite layer of intermediate phases is formed, which mitigates nonradiative recombination in the perovskite absorber layer. As a result, VOC is enhanced by 80 mV.  相似文献   

12.
As perovskite solar cells (PSCs) are highly efficient, demonstration of high‐performance printed devices becomes important. 2D/3D heterostructures have recently emerged as an attractive way to relieving the film inhomogeneity and instability in perovskite devices. In this work, a 2D/3D ensemble with 2D perovskites self‐assembled atop 3D methylammonium lead triiodide (MAPbI3) via a one‐step printing process is shown. A clean and flat interface is observed in the 2D/3D bilayer heterostructure for the first time. The 2D perovskite capping layer significantly suppresses nonradiative charge recombination, resulting in a marked increase in open‐circuit voltage (VOC) of the devices by up to 100 mV. An ultrahigh VOC of 1.20 V is achieved for MAPbI3 PSCs, corresponding to 91% of the Shockley–Queisser limit. Moreover, notable enhancement in light, thermal, and moisture stability is obtained as a result of the protective barrier of the 2D perovskites. These results suggest a viable approach for scalable fabrication of highly efficient perovskite solar cells with enhanced environmental stability.  相似文献   

13.
In this work, significant suppression of the interfacial recombination by facile alkali chloride interface modification of the NiOx hole transport layer in inverted planar perovskite solar cells is achieved. Experimental and theoretical results reveal that the alkali chloride interface modification results in improved ordering of the perovskite films, which in turn reduces defect/trap density, causing reduced interfacial recombination. This leads to a significant improvement in the open‐circuit voltage from 1.07 eV for pristine NiOx to 1.15 eV for KCl‐treated NiOx, resulting in a power conversion efficiency approaching 21%. Furthermore, the suppression of the ion diffusion in the devices is observed, as evidenced by stable photoluminescence (PL) under illumination and high PL quantum efficiency with alkali chloride treatment, as opposed to the luminescence enhancement and low PL quantum efficiency observed for perovskite on pristine NiOx. The suppressed ion diffusion is also consistent with improved stability of the devices with KCl‐treated NiOx. Thus, it is demonstrated that a simple interfacial modification is an effective method to not only suppress interfacial recombination but also to suppress ion migration in the layers deposited on the modified interface due to improved interface ordering and reduced defect density.  相似文献   

14.
Solar cells become a viable energy source to charge lithium ion batteries. Here a simple and efficient photocharging design approach is demonstrated, where a promising low cost single junction solar cell such as perovskite solar cell or dye sensitized solar cell efficiently charges a Li4Ti5O12‐LiCoO2 Li‐ion cell using a DC–DC voltage boost converter. The converter boosts the low input voltage of a single junction solar cell to charge a lithium ion cell and offers advantages including maximum power point tracking of solar photovoltaics and overvoltage protection for the lithium ion cell. This is the first demonstration of this technology. This approach leads to the highest reported overall efficiency of 9.36% and average storage efficiency of 77.2% at 0.5 C discharge for a perovskite solar cell‐converter charging. The high efficiency for the perovskite solar cell‐converter charging is attributed to maximum power harvesting along with high power conversion efficiency of the perovskite solar cell and low potential polarization between the charge and discharge voltage plateaus for the Li4Ti5O12‐LiCoO2 Li‐ion cell.  相似文献   

15.
Interfacial studies and band alignment engineering on the electron transport layer (ETL) play a key role for fabrication of high‐performance perovskite solar cells (PSCs). Here, an amorphous layer of SnO2 (a‐SnO2) between the TiO2 ETL and the perovskite absorber is inserted and the charge transport properties of the device are studied. The double‐layer structure of TiO2 compact layer (c‐TiO2) and a‐SnO2 ETL leads to modification of interface energetics, resulting in improved charge collection and decreased carrier recombination in PSCs. The optimized device based on a‐SnO2/c‐TiO2 ETL shows a maximum power conversion efficiency (PCE) of 21.4% as compared to 19.33% for c‐TiO2 based device. Moreover, the modified device demonstrates a maximum open‐circuit voltage (Voc) of 1.223 V with 387 mV loss in potential, which is among the highest reported value for PSCs with negligible hysteresis. The stability results show that the device on c‐TiO2/a‐SnO2 retains about 91% of its initial PCE value after 500 h light illumination, which is higher than pure c‐TiO2 (67%) based devices. Interestingly, using a‐SnO2/c‐TiO2 ETL the PCE loss was only 10% of initial value under continuous UV light illumination after 30 h, which is higher than that of c‐TiO2 based device (28% PCE loss).  相似文献   

16.
Rapid improvement in photoconversion efficiency (PCE) of solution processable organometallic hybrid halide based perovskite solar cells (PSCs) have taken the photovoltaic (PV) community with a surprise and has extended their application in other electronic devices such as light emitting diodes, photo detectors and batteries. Together with efforts to push the PCE of PSCs to record values >22% – now at par with that of crystalline silicon solar cells – origin of their PV action and underlying physical processes are also deeply investigated worldwide in diverse device configurations. A typical PSC consists of a perovskite film sandwiched between an electron and a hole selective contact thereby creating ESC/perovskite and perovskite/HSC interfaces, respectively. The selective contacts and their interfaces determine properties of perovskite layer and also control the performance, origin of PV action, open circuit voltage, device stability, and hysteresis in PSCs. Herein, we define ideal charge selective contacts, and provide an overview on how the choice of interfacing materials impacts charge accumulation, transport, transfer/recombination, band‐alignment, and electrical stability in PSCs. We then discuss device related considerations such as morphology of the selective contacts (planar or mesoporous), energetics and electrical properties (insulating and conducting), and its chemical properties (organic vs inorganic). Finally, the outlook highlights key challenges and future directions for a commercially viable perovskite based PV technology.  相似文献   

17.
Organic–inorganic hybrid perovskite solar cells with mixed cations and mixed halides have achieved impressive power conversion efficiency of up to 22.1%. Phase segregation due to the mixed compositions has attracted wide concerns, and their nature and origin are still unclear. Some very useful analytical techniques are controversial in microstructural and chemical analyses due to electron beam‐induced damage to the “soft” hybrid perovskite materials. In this study photoluminescence, cathodoluminescence, and transmission electron microscopy are used to study charge carrier recombination and retrieve crystallographic and compositional information for all‐inorganic CsPbIBr2 films on the nanoscale. It is found that under light and electron beam illumination, “iodide‐rich” CsPbI(1+x )Br(2?x ) phases form at grain boundaries as well as segregate as clusters inside the film. Phase segregation generates a high density of mobile ions moving along grain boundaries as ion migration “highways.” Finally, these mobile ions can pile up at the perovskite/TiO2 interface resulting in formation of larger injection barriers, hampering electron extraction and leading to strong current density–voltage hysteresis in the polycrystalline perovskite solar cells. This explains why the planar CsPbIBr2 solar cells exhibit significant hysteresis in efficiency measurements, showing an efficiency of up to 8.02% in the reverse scan and a reduced efficiency of 4.02% in the forward scan, and giving a stabilized efficiency of 6.07%.  相似文献   

18.
Four π‐extended phosphoniumfluorene electrolytes (π‐PFEs) are introduced as hole‐blocking layers (HBL) in inverted architecture planar perovskite solar cells with the structure of ITO/PEDOT:PSS/MAPbI3/PCBM/HBL/Ag. The deep‐lying highest occupied molecular orbital energy level of the π‐PFEs effectively blocks holes, decreasing contact recombination. It is demonstrated that the incorporation of π‐PFEs introduces a dipole moment at the PCBM/Ag interface, resulting in significant enhancement of the built‐in potential of the device. This enhancement results in an increase in the open‐circuit voltage of the device by up to 120 mV, when compared to the commonly used bathocuproine HBL. The results are confirmed both experimentally and by numerical simulation. This work demonstrates that interfacial engineering of the transport layer/contact interface by small molecule electrolytes is a promising route to suppress nonradiative recombination in perovskite devices and compensates for a nonideal energetic alignment at the hole‐transport layer/perovskite interface.  相似文献   

19.
To solve the stability issues of perovskite solar cells (PSC), here a novel interface engineering strategy that a versatile ultrathin 2D perovskite (5‐AVA)2PbI4 (5‐AVA = 5‐ammoniumvaleric acid) passivation layer that is in situ incorporated at the interface between (FAPbI3)0.88(CsPbBr3)0.12 and the hole transporting CuSCN is reported. Surface analysis using X‐ray photoelectron spectroscopy confirms the formation of 2D perovskite. Hysteresis is reduced by the interfacial 2D layer, which could be ascribed to improvement of interfacial charge extraction efficiency, associated with suppression of recombination. Moreover, introduction of the interface passivating layer enhances the moisture stability and photostability as compared to the control perovskite film due to hydrophobic nature of 2D perovskite. The unencapsulated device retains 98% of the initial power conversion efficiency (PCE) after 63 d under moisture exposure of about 10% in the dark. A PCE of the control device is boosted from 13.72 to 16.75% as a consequence of enhanced open‐circuit voltage (Voc) and fill factor along with slightly increased short‐circuit current density (Jsc), which results from reduced trap states of (FAPbI3)0.88(CsPbBr3)0.12 as evidenced by enhanced carrier lifetimes and charge extraction. The perovskite/hole transport material interface engineering gives insight into simultaneous improvements of PCE and device stability.  相似文献   

20.
2D Ruddlesden–Popper perovskites (RPPs) are emerging as potential challengers to their 3D counterpart due to superior stability and competitive efficiency. However, the fundamental questions on energetics of the 2D RPPs are not well understood. Here, the energetics at (PEA)2(MA)n?1PbnI3n+1/[6,6]‐phenyl‐C61‐butyric acid methyl ester (PCBM) interfaces with varying n values of 1, 3, 5, 40, and ∞ are systematically investigated. It is found that n–n junctions form at the 2D RPP interfaces (n = 3, 5, and 40), instead of p–n junctions in the pure 2D and 3D scenarios (n = 1 and ∞). The potential gradient across phenethylammonium iodide ligands that significantly decreases surface work function, promotes separation of the photogenerated charge carriers with electron transferring from perovskite crystal to ligand at the interface, reducing charge recombination, which contributes to the smallest energy loss and the highest open‐circuit voltage (Voc) in the perovskite solar cells (PSCs) based on the 2D RPP (n = 5)/PCBM. The mechanism is further verified by inserting a thin 2D RPP capping layer between pure 3D perovskite and PCBM in PSCs, causing the Voc to evidently increase by 94 mV. Capacitance–voltage measurements with Mott–Schottky analysis demonstrate that such Voc improvement is attributed to the enhanced potential at the interface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号