首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
Organic nutrition of Beggiatoa sp.   总被引:5,自引:2,他引:3       下载免费PDF全文
Culture OH-75-B of Beggiatoa sp. differed significantly from any described previously in its utilization of organic carbon and reduced sulfur compounds. It deposited internal sulfur granules characteristic of Beggiatoa sp. with either sulfide or thiosulfate in the medium. This strain (OH-75-B, clone 2a) could be grown in agitated liquid cultures on mineral medium with acetate as the only source of organic carbon. The resultant growth yields and rates were comparable to those for typical heterotrophs. Of the other simple organic compounds tested, only pyruvate, lactate, or ethanol could singly support the growth of this strain. Single sugars or amino acids neither supported growth nor enhanced it when added to acetate-containing medium. In contrast, compounds of the tricarboxylic acid cycle enhanced growth yields when tested in concert with acetate. These and fluoroacetate inhibition results indicate that Beggiatoa sp. possesses a functional tricarboxylic acid cycle. Poor yields characterized the growth of this strain on dilute yeast extract medium, and higher concentrations of yeast extract proved inhibitory. The enzyme catalase, contrary to the findings of others, had no synergistic influence on growth yields when added to medium containing yeast extract or acetate or both.  相似文献   

7.
8.
9.
10.
11.
Some primitive meteorites are carbon-rich objects containing a variety of organic molecules that constitute a valuable record of organic chemical evolution in the universe prior to the appearance of microorganisms. Families of compounds include hydrocarbons, alcohols, aldehydes, ketones, carboxylic acids, amino acids, amines, amides, heterocycles, phosphonic acids, sulfonic acids, sugar-related compounds and poorly defined high-molecular weight macromolecules. A variety of environments are required in order to explain this organic inventory, including interstellar processes, gas-grain reactions operating in the solar nebula, and hydrothermal alteration of parent bodies. Most likely, substantial amounts of such organic materials were delivered to the Earth via a late accretion, thereby providing organic compounds important for the emergence of life itself, or that served as a feedstock for further chemical evolution. This review discusses the organic content of primitive meteorites and their relevance to the build up of biomolecules.  相似文献   

12.
13.
14.
15.
The effects of chemical quench reactions on the formation of organic compounds at a water surface under simulated primordial earth conditions were investigated for the study of chemical evolution. A mixture of gaseous methane and ammonia over a water surface was exposed to an arc discharge between an electrode and the water surface. This discharge served as a source of dissociated, ionized and excited atomic and molecular species. Various organic molecules were formed in the gaseous, aqueous, and solid states by a subsequent quenching of these reactive species on the water surface. The effects of these water-surface quench reactions were assessed by comparing the amounts of synthesized molecules to the amounts which formed during the discharge of an arc above the water level. The results showed that: (1) the water-surface quench reaction permitted faster rates of formation of an insoluble solid and (2) the quench discharge yielded twice as much amino acids and 17 times more insoluble solids by weight than the other discharge. The highest yield of amino acids with the quench reaction was 9 x 10-7 molecules per erg of input energy. These observations indicate that quench reactions on the oceans, rain, and clouds that would have followed excitation by lightning and shock waves may have played an important role in the prebiotic milieu. Furthermore, the possibility exists that quench reactions can be exploited for the synthesis of organic compounds on a larger scale from simple starting materials.  相似文献   

16.
17.
18.
The metabolism of chlorotic leaves. 2. Organic acids   总被引:10,自引:0,他引:10       下载免费PDF全文
  相似文献   

19.
Ida, S. (Cornell University, Ithaca, N.Y.), and M. Alexander. Permeability of Nitrobacter agilis to organic compounds. J. Bacteriol. 90:151-156. 1965.-None of a variety of inorganic ions or organic compounds served as a sole energy source for the growth of Nitrobacter agilis, and the test substrates were not oxidized by either intact cells or extracts of the obligate chemoautotroph. The organic substances did not serve as sole carbon sources for the bacterium in a synthetic medium, and they failed to enhance the rate of nitrite oxidation. The organism was permeable to acetate and a number of other simple carbon compounds, however, and exogenously supplied acetate was converted to a number of products. On the basis of these findings, possible reasons are examined for the inability of the chemoautotroph to use exogenous organic compounds as energy or carbon sources.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号