首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
There is a growing concern about the cyclability and safety, in particular, of the high‐energy density lithium–metal batteries. This concern is even greater for Li–O2 batteries because O2 that is transported from the cathode to the anode compartment, can exacerbate side reactions and dendrite growth of the lithium metal anode. The key to solving this dilemma lays in tailoring the solid electrolyte interphase (SEI) formed on the lithium metal anode in Li–O2 batteries. Here it is reported that a new electrolyte, formed from LiFSI as the salt and a mixture of tetraethylene glycol dimethyl ether and polymeric ionic liquid of P[C5O2NMA,11]FSI as the solvent, can produce a stable electrode (both cathode and anode)|electrolyte interface in Li–O2 batteries. Specifically, this new electrolyte, when in contact with lithium metal anodes, has the ability to produce a uniform SEI with high ionic conductivity for Li+ transport and desired mechanical property for suppression of dendritic lithium growth. Moreover, the electrolyte possesses a high oxidation tolerance that is very beneficial to the oxygen electrochemistry on the cathode of Li–O2 batteries. As a result, enhanced reversibility and cycle life are realized for the resultant Li–O2 batteries.  相似文献   

2.
Recently, various approaches for adding redox mediators to electrolytes and introducing protective layers onto Li metal have been suggested to overcome the low energy efficiency and poor cycle life of Li–O2 batteries. However, the catalytic effect of the redox mediator for oxygen evolution gradually deteriorates during repeated cycling owing to its decomposition at the surfaces of both the oxygen electrode (cathode) and the Li metal electrode (anode). Here, optimized Li–O2 batteries are designed with a continuously effective redox mediator and a stable protective layer for the Li metal electrode by optimizing the LiBr concentration and introducing a graphene–polydopamine composite layer, respectively. These synergistic modifications lead to a reduction of the charge potential to below 3.4 V and significantly improve the stability and cycle life of Li–O2 batteries. Consequently, a high energy efficiency of above 80% is maintained over 150 cycles. Herein, it is confirmed that the relationships between all the battery materials should be understood in order to improve the performance of Li–O2 batteries.  相似文献   

3.
The insulating nature of sulfur, polysulfide shuttle effect, and lithium‐metal deterioration cause a decrease in practical energy density and fast capacity fade in lithium‐sulfur (Li‐S) batteries. This study presents an integrated strategy for the development of hybrid Li‐S batteries based on a gel sulfur cathode, a solid electrolyte, and a protective anolyte composed of a highly concentrated salt electrolyte containing mixed additives. The dense solid electrolyte completely blocks polysulfide diffusion, and also makes it possible to investigate the cathode and anode independently. This gel cathode effectively traps the polysulfide active material while maintaining a low electrolyte to sulfur ratio of 5.2 mL g?1. The anolyte effectively protects the Li metal and suppresses the consumption of liquid electrolyte, enabling stable long‐term cycling for over 700 h in Li symmetric cells. This advanced design can simultaneously suppress the polysulfide shuttle, protect Li metal, and reduce the liquid electrolyte usage. The assembled hybrid batteries exhibit remarkably stable cycling performance over 300 cycles with high capacity. Finally, surface‐sensitive techniques are carried out to directly visualize and probe the interphase formed on the surface of the Li1.5Al0.5Ge1.5(PO4)3 (LAGP) pellet, which may help stabilize the solid–liquid interface.  相似文献   

4.
Solid‐state lithium metal batteries (SSLMBs) may become one of the high‐energy density storage devices for the next generation of electric vehicles. High safety and energy density can be achieved by utilizing solid electrolytes and Li metal anodes. Therefore, developing cathode materials which can match with Li metal anode efficiently is indispensable. In SSLMBs, Li metal anodes can afford the majority of active lithium ions, then lithium‐depleted cathode materials can be a competitive candidate to achieve high gravimetric energy density as well as save lithium resources. Li0.33MnO2 lithium‐depleted material is chosen, which also has the advantages of low synthesis temperature and low cost (cobalt‐free). Notably, solid‐state electrolyte can greatly alleviate the problem of manganese dissolution in the electrolyte, which is beneficial to improve the cycling stability of the battery. Thus, SSLMBs enable practical applications of lithium‐depleted cathode materials.  相似文献   

5.
Lithium‐air (Li‐air) batteries have become attractive because of their extremely high theoretical energy density. However, conventional Li‐air cells operating with non‐aqueous electrolytes suffer from poor cycle life and low practical energy density due to the clogging of the porous air cathode by insoluble discharge products, contamination of the organic electrolyte and lithium metal anode by moist air, and decomposition of the electrolyte during cycling. These difficulties may be overcome by adopting a cell configuration that consists of a lithium‐metal anode protected from air by a Li+‐ion solid electrolyte and an air electrode in an aqueous catholyte. In this type of configuration, a Li+‐ion conducting “buffer” layer between the lithium‐metal anode and the solid electrolyte is often necessary due to the instability of many solid electrolytes in contact with lithium metal. Based on the type of buffer layer, two different battery configurations are possible: “hybrid” Li‐air batteries and “aqueous” Li‐air batteries. The hybrid and aqueous Li‐air batteries utilize the same battery chemistry and face similar challenges that limit the cell performance. Here, an overview of recent developments in hybrid and aqueous Li‐air batteries is provided and the factors that influence their performance and impede their practical applications, followed by future directions are discussed.  相似文献   

6.
Minimizing electrolyte use is essential to achieve high practical energy density of lithium–sulfur (Li–S) batteries. However, the sulfur cathode is more readily passivated under a lean electrolyte condition, resulting in low sulfur utilization. In addition, continuous electrolyte decomposition on the Li metal anode aggravates the problem, provoking rapid capacity decay. In this work, the dual functionalities of NO3? as a high‐donor‐number (DN) salt anion is presented, which improves the sulfur utilization and cycling stability of lean‐electrolyte Li–S batteries. The NO3? anion elevates the solubility of the sulfur species based on its high electron donating ability, achieving a high sulfur utilization of above 1200 mA h g?1. Furthermore, the anion suppresses electrolyte decomposition on the Li metal by regulating the lithium ion (Li+) solvation sheath, enhancing the cycle performance of the lean electrolyte cell. By understanding the anionic effects, this work demonstrates the potential of the high‐DN electrolyte, which is beneficial for both the cathode and anode of Li–S batteries.  相似文献   

7.
Although Li–O2 batteries are promising next‐generation energy storage systems with superior theoretical capacities, they have a serious limitation regarding the large overpotential upon charging that results from the low conductivity of the discharge product. Thus, various redox mediators (RMs) have been widely studied to reduce the overpotential in the charging process, which should promote the oxidation of Li2O2. However, RMs degrade the Li metal anode through a parasitic reaction between the RM and the Li metal, and a solution for this phenomenon is necessary. In this study, an effective method is proposed to prevent the migration of the RM toward the anode side of the lithium using a separator that is modified with a negatively charged polymer. When DMPZ (5,10‐dihydro‐5,10‐dimethylphenazine) is used as an RM, it is found that the modified separator suppresses the migration of DMPZ toward the counter electrode of the Li metal anode. This is investigated by a visual redox couple diffusion test, a morphological investigation, and an X‐ray diffraction study. This advanced separator effectively maximizes the catalytic activity of the redox mediator. Li–O2 batteries using both a highly concentrated DMPZ and the modified separator exhibit improved performance and maintained 90% round‐trip efficiency up to the 20th cycle.  相似文献   

8.
New energy storage and conversion systems require large‐scale, cost‐effective, good safety, high reliability, and high energy density. This study demonstrates a low‐cost and safe aqueous rechargeable lithium‐nickel (Li‐Ni) battery with solid state Ni(OH)2/NiOOH redox couple as cathode and hybrid electrolytes separated by a Li‐ion‐conductive solid electrolyte layer. The proposed aqueous rechargeable Li‐Ni battery exhibits an approximately open‐circuit potential of 3.5 V, outperforming the theoretic stable window of water 1.23 V, and its energy density can be 912.6 W h kg‐1, which is much higher than that of state‐of‐the‐art lithium ion batteries. The use of a solid‐state redox couple as cathode with a metallic lithium anode provides another postlithium chemistry for practical energy storage and conversion.  相似文献   

9.
Lithium metal batteries (LMBs) are promising candidates for next‐generation energy storage due to their high energy densities on both weight and volume bases. However, LMBs usually undergo uncontrollable lithium deposition, unstable solid electrolyte interphase, and volume expansion, which easily lead to low Coulombic efficiency, poor cycling performance, and even safety hazards, hindering their practical applications for more than forty years. These issues can be further exacerbated if operated at high current densities. Here a stable lithium metal battery enabled by 3D porous poly‐melamine‐formaldehyde (PMF)/Li composite anode is reported. PMF with a large number of polar groups (amine and triazine) can effectively homogenize Li‐ion concentration when these ions approach to the anode surface and thus achieve uniform Li deposition. Moreover, the 3D structured anode can serve as a Li host to mitigate the volume change during Li stripping and plating process. Galvanostatic measurements demonstrate that the 3D composite electrode can achieve high‐lithium Coulombic efficiency of 94.7% at an ultrahigh current density of 10 mA cm?2 after 50 cycles with low hysteresis and smooth voltage plateaus. When coupled with Li4Ti5O12, half‐cells show enhanced rate capabilities and Coulombic efficiencies, opening great opportunities for high‐energy batteries.  相似文献   

10.
Lithium metal as an ultimate anode material of future rechargeable batteries may furnish the highest energy density for its pairing cathode, although preventing the growth of lithium dendrites in liquid electrolytes is a major challenge. This work reports that stable lithium metal anodes can be achieved by charging with high‐frequency sinusoidal ripple current generated by rotating triboelectric nanogenerators (R‐TENGs). Compared with constant DC current charging, sinusoidal ripple current charging by R‐TENG improves the uniformity of lithium deposition during cycling test. Consequently, symmetric Li/Li cells exhibit lower overpotential and better cycling stability. In addition, full cells assembled with lithium metal anodes and LiFePO4 cathodes show considerably improved capacity retention when charged by R‐TENG's sinusoidal ripple current (99.5%) compared to constant current (78.7%) after 200 cycles. The charging strategy device in this work provides a promising direction toward improving the cycle life of Li metal batteries. In addition, the combination of R‐TENGs with Li metal batteries offers an encouraging solution for achieving stable energy supply in self‐powered systems.  相似文献   

11.
Lithium (Li) metal has been extensively investigated as an anode for rechargeable battery applications due to its ultrahigh theoretical specific capacity and the lowest redox potential. However, significant challenges including dendrite growth and low Coulombic efficiency are still hindering the practical applications of rechargeable Li metal batteries. It is demonstrated that long‐term cycling of Li metal batteries can be realized by the formation of a transient high‐concentration electrolyte layer near the surface of Li metal anode during high rate discharge process. The highly concentrated Li+ ions in this transient layer will immediately be solvated by the available solvent molecules and facilitate the formation of a stable and flexible solid electrolyte interphase (SEI) layer composed of a poly(ethylene carbonate) framework integrated with other organic/inorganic lithium salts. This SEI layer largely suppresses the corrosion of Li metal anode attacked by free organic solvents and enables the long‐term operation of Li metal batteries. The fundamental findings in this work provide a new direction for the development of Li metal batteries that could be operated at high current densities for a wide range of applications.  相似文献   

12.
The anionic redox activity in lithium‐rich layered oxides has the potential to boost the energy density of lithium‐ion batteries. Although it is widely accepted that the anionic redox activity stems from the orphaned oxygen energy level, its regulation and structural stabilization, which are essential for practical employment, remain still elusive, requiring an improved fundamental understanding. Herein, the oxygen redox activity for a wide range of 3d transition‐metal‐based Li2TMO3 compounds is investigated and the intrinsic competition between the cationic and anionic redox reaction is unveiled. It is demonstrated that the energy level of the orphaned oxygen state (and, correspondingly, the activity) is delicately governed by the type and number of neighboring transition metals owing to the π‐type interactions between Li? O? Li and M t2g states. Based on these findings, a simple model that can be used to estimate the anionic redox activity of various lithium‐rich layered oxides is proposed. The model explains the recently reported significantly different oxygen redox voltages or inactivity in lithium‐rich materials despite the commonly observed Li? O? Li states with presumably unhybridized character. The discovery of hidden factors that rule the anionic redox in lithium‐rich cathode materials will aid in enabling controlled cumulative cationic and anionic redox reactions.  相似文献   

13.
Li metal can potentially deliver much higher specific capacity than commercially used anodes. Nevertheless, because of its poor reversibility, abundant excess Li (usually more than three times) is required in Li metal batteries, leading to higher costs and decreased energy density. Here, a concentrated lithium bis(trifluoromethane sulfonyl) imide (LiTFSI)–lithium nitrate (LiNO3)–lithium bis(fluorosulfonyl)imide (LiFSI) ternary‐salts electrolyte is introduced to realize a high stable Li metal full‐cell with only a slight excess of Li. LiNO3 and LiFSI contribute to the formation of stable Li2O–LiF‐rich solid electrolyte interface layers, and LiTFSI helps to stabilize the electrolyte under high concentration. Li metal in the electrolyte remains stable over 450 cycles and the average Coulombic efficiency reaches 99.1%. Moreover, with 0.5 × excess Li metal, the Coulombic efficiency of Li metal in the LiTFSI–LiNO3–LiFSI reaches 99.4%. The electrolyte also presents high stability to the LiFePO4 cathode, the capacity retention after 500 cycles is 92.0% and the Coulombic efficiency is 99.8%. A Li metal full‐cell with only 0.44 × excess Li is also assembled, it remains stable over 70 cycles and 83% of the initial capacity is maintained after 100 cycles.  相似文献   

14.
Lithium metal batteries (LMBs) combining a Li metal anode with a transition metal (TM) cathode can achieve higher practical energy densities (Wh L?1) than Li/S or Li/O2 cells. Research for improving the electrochemical behavior of the Li metal anode by, for example, modifying the liquid electrolyte is often conducted in symmetrical Li/Li or Li/Cu cells. This study now demonstrates the influence of the TM cathode on the Li metal anode, thus full cell behavior is analyzed in a way not considered so far in research with LMBs. Therefore, the deposition/dissolution behavior of Li metal and the resulting morphology is investigated with three different cathode materials (LiNi0.5Mn1.5O4, LiNi0.6Mn0.2Co0.2O2, and LiFePO4) by post mortem analysis with a scanning electron microscope. The observed large differences of the Li metal morphology are ascribed to the dissolution and crossover of TMs found deposited on Li metal and in the electrolyte by X‐ray photoelectron spectroscopy, energy‐dispersive X‐ray spectroscopy, and total reflection X‐ray fluorescence analysis. To support this correlation, the TM dissolution is simulated by adding Mn salt to the electrolyte. This study offers new insights into the cross talk between the Li metal anodes and TM cathodes, which is essential, when investigating Li metal electrodes for LMB full cells.  相似文献   

15.
Lithium (Li) metal has attracted unprecedented attention as the ultimate anode material for future rechargeable batteries, but the electrochemical behavior (such as Li dendrites and gassing problems) in real Li metal pouch cells has received little attention. To achieve realistic high‐energy Li metal batteries, the designed solid electrolyte interface to suppress both Li dendrites and catastrophic gassing problems is urgently needed at cell level. Here, an efficient multifunctional silanization interface (MSI) is proposed for high‐energy Li metal pouch cells. Such an MSI not only guides uniform nucleation and growth of Li metal but also suppresses interfacial parasitic reactions between Li metal and electrolyte. As a result, under harsh conditions (negative to positive electrode capacity ratio of 2.96 and electrolyte weight to cathode capacity ratio of 2.7 g Ah?1), a long‐running lifespan (over 160 cycles with a capacity retention of 96% at 1 C), and low‐gassing behavior of realistic high‐energy Li metal pouch cell (1 Ah, 300 Wh kg?1) is achieved. This work opens a promising avenue toward the commercial applications of high‐energy Li metal batteries.  相似文献   

16.
Use of a protective coating on a lithium metal anode (LMA) is an effective approach to enhance its coulombic efficiency and cycling stability. Here, a facile approach to produce uniform silver nanoparticle‐decorated LMA for high‐performance Li metal batteries (LMBs) is reported. This effective treatment can lead to well‐controlled nucleation and the formation of a stable solid electrolyte interphase (SEI). Ag nanoparticles embedded in the surface of Li anodes induce uniform Li plating/stripping morphologies with reduced overpotential. More importantly, cross‐linked lithium fluoride‐rich interphase formed during Ag+ reduction enables a highly stable SEI layer. Based on the Ag‐LiF decorated anodes, LMBs with LiNi1/3Mn1/3Co1/3O2 cathode (≈1.8 mAh cm?2) can retain >80% capacity over 500 cycles. The similar approach can also be used to treat sodium metal anodes. Excellent stability (80% capacity retention in 10 000 cycles) is obtained for a Na||Na3V2(PO4)3 full cell using a Na‐Ag‐NaF/Na anode cycled in carbonate electrolyte. These results clearly indicate that synergetic control of the nucleation and SEI is an efficient approach to stabilize rechargeable metal batteries.  相似文献   

17.
Lithium–sulfur (Li‐S) batteries are a promising next‐generation energy‐storage system, but the polysulfide shuttle and dendritic Li growth seriously hinder their commercial viability. Most of the previous studies have focused on only one of these two issues at a time. To address both the issues simultaneously, presented here is a highly conductive, noncarbon, 3D vanadium nitride (VN) nanowire array as an efficient host for both sulfur cathodes and lithium‐metal anodes. With fast electron and ion transport and high porosity and surface area, VN traps the soluble polysulfides, promotes the redox kinetics of sulfur cathodes, facilitates uniform nucleation/growth of lithium metal, and inhibits lithium dendrite growth at an unprecedented high current density of 10 mA cm?2 over 200 h of repeated plating/stripping. As a result, VN‐Li||VN‐S full cells constructed with VN as both an anode and cathode host with a negative to positive electrode capacity ratio of only ≈2 deliver remarkable electrochemical performance with a high Coulombic efficiency of ≈99.6% over 850 cycles at a high 4 C rate and a high areal capacity of 4.6 mA h cm?2. The strategy presented here offers a viable approach to realize high‐energy‐density, safe Li‐metal‐based batteries.  相似文献   

18.
Recently, a consensus has been reached that using lithium metal as an anode in rechargeable Li‐ion batteries is the best way to obtain the high energy density necessary to power electronic devices. Challenges remain, however, with respect to controlling dendritic Li growth on these electrodes, enhancing compatibility with carbonate‐based electrolytes, and forming a stable solid–electrolyte interface layer. Herein, a groundbreaking solution to these challenges consisting in the preparation of a Li2TiO3 (LT) layer that can be used to cover Li electrodes via a simple and scalable fabrication method, is suggested. Not only does this LT layer impede direct contact between electrode and electrolyte, thus avoiding side reactions, but it assists and expedites Li‐ion flux in batteries, thus suppressing Li dendrite growth. Other effects of the LT layer on electrochemical performance are investigated by scanning electron microscopy, electrochemical impedance spectroscopy, and galvanostatic intermittent titration technique analyses. Notably, LT layer‐incorporating Li cells comprising high‐capacity/voltage cathodes with reasonably high mass loading (LiNi0.8Co0.1Mn0.1O2, LiNi0.5Mn1.5O4, and LiMn2O4) show highly stable cycling performance in a carbonate‐based electrolyte. Therefore, it is believed that the approach based on the LT layer can boost the realization of high energy density lithium metal batteries and next‐generation batteries.  相似文献   

19.
Due to the limited oxidation stability (<4 V) of ether oxygen in its polymer structure, polyethylene oxide (PEO)‐based polymer electrolytes are not compatible with high‐voltage (>4 V) cathodes, thus hinder further increases in the energy density of lithium (Li) metal batteries (LMBs). Here, a new type of polymer‐in‐“quasi‐ionic liquid” electrolyte is designed, which reduces the electron density on ethereal oxygens in PEO and ether solvent molecules, induces the formation of stable interfacial layers on both surfaces of the LiNi1/3Mn1/3Co1/3O2 (NMC) cathode and the Li metal anode in Li||NMC batteries, and results in a capacity retention of 88.4%, 86.7%, and 79.2% after 300 cycles with a charge cutoff voltage of 4.2, 4.3, and 4.4 V for the LMBs, respectively. Therefore, the use of “quasi‐ionic liquids” is a promising approach to design new polymer electrolytes for high‐voltage and high‐specific‐energy LMBs.  相似文献   

20.
Lithium ‐ air batteries have become a focus of research on future battery technologies. Technical issues associated with lithium‐air batteries, however, are rather complex. Apart from the sluggish oxygen reaction kinetics which demand efficient oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) catalysts, issues are also inherited from the nature of an open battery system and the use of reactive metal lithium as anode. Lithium‐air batteries, which exchange oxygen directly with ambient air, face more challenges due to the additional oxidative agents of moisture, carbon dioxide, etc. which degrade the metal lithium anode, deteriorating the performance of the batteries. In order to improve the cycling performance one must hold a full picture of lithium‐oxygen electrochemistry in the presence of carbon dioxide and/or moisture and fully understand the fundamentals of chemistry reactions therein. Recent advances in the exploration of the effect of moisture and CO2 contaminants on Li‐O2 batteries are reviewed, and the mechanistic understanding of discharge/charge process in O2 at controlled level of moisture and/or CO2 are illustrated. Prospects for development opportunities of Li‐air batteries, insight into future research directions, and guidelines for the further development of rechargeable Li‐air batteries are also given.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号